Answer:
A scientific theory is an explanation of an aspect of the natural world and universe that has been repeatedly tested and verified in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluation of results. Where possible, theories are tested under controlled conditions in an experiment. In circumstances not amenable to experimental testing, theories are evaluated through principles of abductive reasoning. Established scientific theories have withstood rigorous scrutiny and embody scientific knowledge.
A scientific theory differs from a scientific fact or scientific law in that a theory explains "why" or "how": a fact is a simple, basic observation, whereas a law is a statement (often a mathematical equation) about a relationship between facts. For example, Newton’s Law of Gravity is a mathematical equation that can be used to predict the attraction between bodies, but it is not a theory to explain how gravity works. Stephen Jay Gould wrote that "...facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts.
mark me as brainlist
Answer:
The average thickness of the blubber is<u> 0.077 m</u>
Explanation:
Here, we want to calculate the average thickness of the Walrus blubber.
We employ a mathematical formula to calculate this;
The rate of heat transfer(H) through the Walrus blubber = dQ/dT = KA(T2-T1)/L
Where dQ is the change in amount of heat transferred
dT is the temperature gradient(change in temperature) i.e T2-T1
dQ/dT = 220 W
K is the conductivity of fatty tissue without blood = 0.20 (J/s · m · °C)
A is the surface area which is 2.23 m^2
T2 = 37.0 °C
T1 = -1.0 °C
L is ?
We can rewrite the equation in terms of L as follows;
L × dQ/dT = KA(T2-T1)
L = KA(T2-T1) ÷ dQ/dT
Imputing the values listed above;
L = (0.2 * 2.23)(37-(-1))/220
L = (0.2 * 2.23 * 38)/220 = 16.948/220 = 0.077 m
Answer:
The amount of phase shift between input and output signal is important when measuring a common emitter amplifier circuit.
Explanation:
the amount of phase shift between input and output signal is important when measuring a common emitter amplifier circuit
In signal processing, phase distortion is change in the shape of the waveform, that occurs when the phase shift introduced by a circuit is not directly proportional to frequency.
In a common emitter amplifier circuit there is an 180-degree phase shift between the input and output waveforms.
Answer:
- hoop stress
- longitudinal stress
- material used
all this could led to the failure of the garden hose and the tear along the length
Explanation:
For the flow of water to occur in any equipment, water has to flow from a high pressure to a low pressure. considering the pipe, water is flowing at a constant pressure of 30 psi inside the pipe which is assumed to be higher than the allowable operating pressure of the pipe. but the greatest change in pressure will occur at the end of the hose because at that point the water is trying to leave the hose into the atmosphere, therefore the great change in pressure along the length of the hose closest to the end of the hose will cause a tear there. also the other factors that might lead to the failure of the garden hose includes :
hoop stress ( which acts along the circumference of the pipe):
αh =
EQUATION 1
and Longitudinal stress ( acting along the length of the pipe )
αl =
EQUATION 2
where p = water pressure inside the hose
d = diameter of hose, T = thickness of hose
we can as well attribute the failure of the hose to the material used in making the hose .
assume for a thin cylindrical pipe material used to be
≥ 20
insert this value into equation 1
αh =
= 60/2 = 30 psi
the allowable hoop stress was developed by the material which could have also led to the failure of the garden hose