Answer:

Explanation:
The kinetic energy possessed by particles will be

where,
M is the mass of the particle (7920938.3 MeV/c²)
c is the speed of the light
Also,
energy of the proton particle = 
where,
v is the velocity
m_p is the mass of the proton (938.3 MeV/c²)
since the energy is equal
thus,

or
![1-\frac{v^2}{c^2}=[\frac{2m_p}{M}]^2](https://tex.z-dn.net/?f=1-%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%3D%5B%5Cfrac%7B2m_p%7D%7BM%7D%5D%5E2)
substituting the values in the above equation, we get
![1-\frac{v^2}{c^2}=[\frac{2\times 938.3 }{7920}]^2](https://tex.z-dn.net/?f=1-%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%3D%5B%5Cfrac%7B2%5Ctimes%20938.3%20%7D%7B7920%7D%5D%5E2)
or

Hence,<u> the speed necessary for the specified condition to occur is </u><u>0.9714 times the speed of the light</u>
Given that,
Horizontal velocity of the object, v = 20 m/s
Height of the cliff, h = 125 m
We need to find the time that it takes the object to fall to the ground from the cliff is most nearly. It can be calculated using second equation of motion. Let us consider that the initial speed of the object is 0. So,

Here, a = g and u = 0

So, the object will take 5 seconds to fall to the ground from the cliff.
Answer:
Aluminium
Explanation:
Aluminium has the least resistance since It has 3 free electrons per atom. Its resistivity is low compared to other metals provided in the choices (gold, nichrome, tungsten). Low resistivity of metals means a high conductance of the metal referred to.
<span>The flywheel is solid cylindrical disc. Moment of inertial = ½ * mass * radius^2
Mass = 40.0 kg
Radius = ½ * 76.0 cm = 38 cm = 0.38 meter
Moment of inertial = ½ * 41 * 0.36^2
Convert rpm to radians/second
The distance of 1 revolution = 1 circumference = 2 * π * r
The number of radians/s in 1 revolution = 2 * π
1 minute = 60 seconds
1 revolution per minute = 2 * π radians / 60 seconds = π/30 rad/s
Initial angular velocity = 500 * π/30 = 16.667 * π rad/s
170 revolutions = 170 * 2 * π = 340 * π radians
The flywheel’s initial angular velocity = 16.667 * π rad/s. It decelerated at the rate of 1.071 rad/s^2 for 48.89 seconds.
θ = ωi * t + ½ * α * t^2
θ = 16.667 * π * 48.89 + ½ * -1.071 * 48.89^2
2559.9 - 1280
θ = 1280 radians</span>
Answer:
Explanation:
Initial kinetic energy = 29 J
work done against gravity = mgsin33 x d , m is mass of the block
= 1.2 x 9.8 sin 33 x .9
= 5.76 J
potential energy stored in compressed spring
= 1/2 k x², k is spring constant and x is compression
= .5 x 200 x .3²
= 9
energy left = 29 - ( 5.76 + 9 )
= 14.24 J
b )
energy stored in spring when compression is .4 m
= 1/2 x 200 x .4²
= 16 J
required kinetic energy = 16 + 5.76
= 21.76 J
Block must be projected with energy of 21.76 J .