The answer is A because it’s how you calculate the mass
Answer:

Explanation:
Hello,
In this case, by using the general gas law, that allows us to understand the pressure-volume-temperature relationship as shown below:

Thus, solving for the temperature at the end (considering absolute units of Kelvin), we obtain:

Best regards.
I think learn to drive is the most important part
The solution would be like this for this specific problem:
<span>Given:
H2 = </span><span>2.6 atm
CL2 = 3.14 atm</span>
<span>
pressure H2 = 2.6 - x
pressure Cl2 = 3.14 - x
<span>pressure HBr = 2x = 1.13
x = 1.13 / 2 = 0.565
<span>pressure H2 = 2.6 - 0.565 = 2.035
pressure Br2 = 3.14 - 0.565 = 2.575
Kp = (1.13)^2 / 2.035 x 2.575</span></span></span>
= 1.2769 / (5.240125)
= 0.24367739319195629875241525726963
= 0.244
<span>Therefore, the Kp for the reaction at the given temperature
is 0.244.
To add, </span>the hypothetical pressure of a gas if
it alone occupied the whole volume of the original mixture at the same
temperature is called the partial pressure or Kp.
The arrangement of particles that make up an ionic compound would be an ionic lattice type of crystal arrangement. An ionic lattice type of structure will be formed due to many of the ionic bonds formed between the oppositely charged ions of the metal and nonmetal.