Answer:
V O2 = 1.623 L
Explanation:
- 1 mol ≡ 6.022 E23 molecules
∴ molecules O2 = 4.00 E22 molecules
⇒ moles O2 = (4.00 E22 molecules O2)×(mol O2/6.022 E23 molecules)
⇒ moles O2 = 0.0664 moles
at STP:
∴ T = 25°C ≅ 298 K
∴ P = 1 atm
assuming ideal gas:
∴ V = RTn/P
⇒ V O2 = ((0.082 atm.L/K.mol)(298 K)(0.0664 mol))/( 1 atm)
⇒ V O2 = 1.623 L
Answer:
The answer to your question is 1.83 x 10²⁵ particles
Explanation:
Data
particles of H₂O = ?
mass of H₂O = 546 g
Process
1.- Calculate the molar mass of Water
Molar mass = (2 x 1) + (1 x 16)
= 2 + 16
= 18 g
2.- Use proportions to find the number of particles. Use Avogadro's number.
18 g ---------------- 6.023 x 10²³ particles
546 g --------------- x
x = (546 x 6.023 x 10²³) / 18
3.- Simplification
x = 3.289 x 10²⁶ / 18
4.- Result
x = 1.83 x 10²⁵ particles
False
Explanation:
Sound waves are longitudinal mechanical waves.
Mechanical waves are waves that requires a medium to propagate them.
- A transverse wave is a wave that is propagated perpendicularly to its source.
- An example is electromagnetic radiation.
- A longitudinal wave is a wave that is directed parallel to their source.
- Sound wave is a longitudinal wave.
- It has series of rarefaction and compression along its travel path.
- Rarefaction are areas of sparse particles.
- Compression are areas with dense particles.
learn more:
Sound wave brainly.com/question/3619541
#learnwithBrainly
False because there’s only 60% turbulence 20% heat 20% sound