Answer: option A.
Explanation:
Q= heat removed from the water
m= mass of the water = 80 grams
c = heat capacity of water= 4.18 J/g°C
Q = -10,032 joules -10,000 Joules
Negative sign indicates that heat was removed from the water
Answer:
So, you're going to need the equation ρ = ρo [1 + α(T-To)]
1.59x10^-8 ohms*m is your ρo because that is measured at your reference temperature (To), 20◦C. T is your 6◦C and α is 0.0038(◦C)−1. So, using that you solve for ρ. If you keep up with the units though, you notice it comes out to be ohms*m and that isn't what you want.
So, the next equation you need is J=σE where E is your electric field (3026 V/m) and σ is the electrical conductivity which is the inverse of your answer you got in the previous equation. So find the inverse of that answer and multiply it by your electric field and that will give you the current density.
I hope this helps!
Explanation:
Answer:
The second distance of the sound from the source is 431.78 m..
Explanation:
Given;
first distance of the sound from the source, r₁ = 1.48 m
first sound intensity level, I₁ = 120 dB
second sound intensity level, I₂ = 70.7 dB
second distance of the sound from the source, r₂ = ?
The intensity of sound in W/m² is given as;
![dB = 10 Log[\frac{I}{I_o} ]\\\\For \ 120 dB\\\\120 = 10Log[\frac{I}{1*10^{-12}}]\\\\12 = Log[\frac{I}{1*10^{-12}}]\\\\10^{12} = \frac{I}{1*10^{-12}}\\\\I = 10^{12} \ \times \ 10^{-12}\\\\I = 1 \ W/m^2](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5CFor%20%5C%20120%20dB%5C%5C%5C%5C120%20%3D%2010Log%5B%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5D%5C%5C%5C%5C12%20%3D%20%20Log%5B%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5D%5C%5C%5C%5C10%5E%7B12%7D%20%3D%20%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5C%5C%5C%5CI%20%3D%2010%5E%7B12%7D%20%5C%20%5Ctimes%20%5C%2010%5E%7B-12%7D%5C%5C%5C%5CI%20%3D%201%20%5C%20W%2Fm%5E2)
![For \ 70.7 dB\\\\70.7 = 10Log[\frac{I}{1*10^{-12}}]\\\\7.07 = Log[\frac{I}{1*10^{-12}}]\\\\10^{7.07} = \frac{I}{1*10^{-12}}\\\\I = 10^{7.07} \ \times \ 10^{-12}\\\\I = 1 \times \ 10^{-4.93} \ W/m^2](https://tex.z-dn.net/?f=For%20%5C%2070.7%20dB%5C%5C%5C%5C70.7%20%3D%2010Log%5B%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5D%5C%5C%5C%5C7.07%20%3D%20%20Log%5B%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5D%5C%5C%5C%5C10%5E%7B7.07%7D%20%3D%20%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5C%5C%5C%5CI%20%3D%2010%5E%7B7.07%7D%20%5C%20%5Ctimes%20%5C%2010%5E%7B-12%7D%5C%5C%5C%5CI%20%3D%201%20%5Ctimes%20%5C%2010%5E%7B-4.93%7D%20%5C%20W%2Fm%5E2)
The second distance, r₂, can be determined from sound intensity formula given as;

Therefore, the second distance of the sound from the source is 431.78 m.
Answer:
Explanation:
Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. ... Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator