Answer:
We need about 8769 meters of wire to produce a 2.6 kilogauss magnetic field.
Explanation:
Recall the formula for the magnetic field produced by a solenoid of length L. N turns, and running a current I:

So, in our case, where B = 2.6 KG = 0.26 Tesla; I is 3 amperes, and L = 0.57 m, we can find what is the number of turns needed;

Therefore we need about 39312 turns of wire. Considering that each turn must have a length of
, where D is the diameter of the plastic cylindrical tube, then the total length of the wire must be:

We can round it to about 8769 meters.
Assuming you are looking for the acceleration a:
1.

2.

where T is the tension and a is the acceleration of the blocks. The acceleration of the two blocks and the acceleration of the pulley must be equal.
The torque on the pulley is given by:
3.

where

and

.
Combining the three equations:
A) lighting an electric lamp as it becomes darker
Answer:
In order to measure the amount of solution added in or drained out, the burette must be observed at eye level straight to the bottom of the meniscus. The liquid in the burette should be completely free of bubbles to ensure accurate measurements.