Compute first for the vertical motion, the formula is:
y = gt²/2
0.810 m = (9.81 m/s²)(t)²/2
t = 0.4064 s
whereas the horizontal motion is computed by:
x = (vx)t
4.65 m = (vx)(0.4064 s)
4.65 m/ 0.4064s = (vx)
(vx) = 11.44 m / s
So look for the final vertical speed.
(vy) = gt
(vy) = (9.81 m/s²)(0.4064 s)
(vy) = 3.99 m/s
speed with which it hit the ground:
v = sqrt[(vx)² + (vy)²]
v = sqrt[(11.44 m/s)² + (3.99 m/s)²]
v = 12.12 m / s
A theory is an idea that is widely agreed on by scientists and can be changed when new info comes to light while a hypothesis is an educated guess sometimes based on prior knowledge.
D.) Rubbing your hands together
Hope this helps! ( brainleist??)
Answer:
Explanation:
For fundamental frequency in a vibrating string , the formula is
n = 1 / 2L x √ ( T /m₁ )
n is frequency , L is length , T is tension and m₁ is mass per unit length .
For first string ,
293 = 1 / 2L x √ ( 49 N /m₁ )
For second string , let mass per unit length be m₂ .
196 = 1 / 2L x √ ( 49 N /m₂ ) ------ ( 1 )
To bring its frequency back to previous one let tension be T
293 = 1 / 2L x √ ( T /m₂ ) ------- ( 2 )
Dividing
293 / 196 = √ ( T /49 )
1.4948 = √ ( T /49 )
2.2344 = T /49
T = 109.48 N .