Groups 13 through 18 are the constitute p-block
The atomic number of an element is based on the number of protons in the atomic nuclei of its atoms.
Answer:
pH of the solution will slightly increase as it becomes less acidic for which it turns out to be more diluted.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the pH change of the solution by firstly calculating the HCl concentration, as equal to that of the hydrogen ions whose pH is 2 as this is a strong acid:
![[HCl]=[H^+]=10^{-pH}=10^{-2}=0.01M\\](https://tex.z-dn.net/?f=%5BHCl%5D%3D%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-2%7D%3D0.01M%5C%5C)
Now, since water is added to the solution, but we do not have the initial volume of this solution, we can ensure that its pH will increase, become less acidic, because the concentration of the acid, and consequently that of the hydrogen ions, is diminished as the volume is increased.
Best regards!
Answer:
41.3 °C
Explanation:
From the question given above, the following data were obtained:
Mass (M) of water = 27.56 g
Heat (Q) loss = 2443 J
Final temperature (T2) = 62.5 °C
Initial temperature (T1) =?
NOTE: The specific heat capacity (C) of water is 4.18 J/g°C
Thus, we can obtain the initial temperature of the water by using the following formula:
Q = MC(T2 – T1)
2443 = 27.56 × 4.18 (62.5 – T1)
2443 = 115.2008 (62.5 – T1)
Divide both side by 115.2008
2443 / 115.2008 = (62.5 – T1)
21.20645 = 62.5 – T1
Collect like terms
21.20645 – 62.5 = – T1
– 41.3 = – T1
Divide both side by – 1
– 41.3 /– 1= – T1 / –1
41.3 = T1
T1 = 41.3 °C
Thus, the initial temperature of the water was 41.3 °C
Answer:
is considered as the limiting reagent for this reaction.
Explanation:
Limiting reagent is the reagent which limits the formation of the product.
Excess reagent is the reagent which is present in excess in a chemical reaction.
For the combustion of acetylene, the reaction follows:

By Stoichiometry,
5 moles of oxygen gas reacts with 2 moles of acetylene.
So, 81 moles of oxygen gas will react with =
= 32.4 moles of acetylene.
As, the required amount of acetylene is less than the given amount. So, it is considered as an excess reagent and oxygen gas is the limiting reagent.