<span>Acceleration is the rate of
change of the velocity of an object that is moving. This value is a result of
all the forces that is acting on an object which is described by Newton's
second law of motion. Calculations of such is straightforward, if we are given
the final velocity, the initial velocity and the total time interval. However, we are not given these values. We are only left by using the kinematic equation expressed as:
d = v0t + at^2/2
We cancel the term with v0 since it is initially at rest,
d = at^2/2
44 = a(6.2)^2/2
a = 2.3 m/s^2
</span>
Did you try looking it up ?
The conservation of energy always holds true even when not clearly observable in machines that are less than 100% efficient. More often than not a machine will suffer energy losses (e.g. consider for a cooling fan: friction between the rotating blades, drag resistance in the air the fan is pushing around, resistance in the wire, and heat radiating/conducting away from the circuitry).
ANSWER:
d. remains a non-zero constant.
STEP-BY-STEP EXPLANATION:
If we consider that there is no air resistance and that the horizontal component would be at x, the velocity remains a non-zero constant
Answer:
The type of mechanical energy that is possessed due to the virtue of motion or state of a body is known as potential energy.
Its formula: PE= mgh
Its SI unit is joule.
Hope it helps you..