Isotopes refer to different atoms of the same element (i.e. same number of protons) that differ in the number of neutrons they have (giving them different atomic weights). Atomic weight is the sum of protons and neutrons (each contributes 1 atomic mass unit).
Carbon has 6 protons by definition. If you have a carbon-13 atom (the 13 referring to its mass), the atom has 13 - 6 = 7 neutrons. Since it's neutral, protons = electrons, so there are also 6 electrons.
Sulfur has 16 protons by definition. If you have a sulfur-32 atom, the atom has 32 - 16 = 16 neutrons. Since it's neutral, protons = electrons, so there are also 16 electrons.
To develop this problem it will be necessary to apply the concepts related to the frequency of a spring mass system, for which it is necessary that its mathematical function is described as

Here,
k = Spring constant
m = Mass
Our values are given as,


Rearranging to find the spring constant we have that,




Therefore the spring constant is 1.38N/m
Answer:
200 mL
Explanation:
Given that,
Initial volume, V₁ = 300 mL
Initial pressure, P₁ = 0.5 kPa
Final pressure, P₂ = 0.75 kPa
We need to find the final volume of the sample if pressure is increased at constant temperature. It is based on Boyle's law. Its mathematical form is given by :

V₂ is the final volume

So, the final volume of the sample is 200 mL.
Answer:
Explanation:
The formula for the magnitude of a vector is
and then round to the hundredths place:
3.11 m. Since we are in Q2, we can also find the direction of this vector:
but since we are in Q2, we add 180 degrees to the result, getting the angle to be 115.3