Answer:
A plane mirror is a mirror with a flat (planar) reflective surface. For light rays striking a plane mirror, the angle of reflection equals the angle of incidence. The angle of the incidence is the angle between the incident ray and the surface normal (an imaginary line perpendicular to the surface).
Answer:
d = 1.24 kg/m³
v = 0.81 m³/kg
Explanation:
To do this, we need to analyze the given data and know the expressions we need to use here to do calculations.
We have a pressure of 1.05 atm and 300 K of temperature. To determine the density, we need to use a similar expression of an ideal gas. In this case, instead of using moles, we will use density:
P = dRT
d = P/RT (1)
Where:
R: universal constant of gases
d: density.
From here we can determine the specific volume by using the following expression:
v = 1/d (2)
Now, as we are looking for density, we need to convert the units of pressure in atm to Pascal (or N/m) and the conversion is the following:
P = 1.05 atm * 1.013x10⁵ N/m atm = 106,365 N/m
Now, using R as 287 the density would be:
d = 106,365 / (287 * 300)
<h2>
d = 1.24 kg/m³</h2>
Finally the specific volume:
v = 1 / 1.41
<h2>
v = 0.81 m³/kg</h2>
Hope this helps
The formula for getting the distance will be distance = speed x time
D = S x T
speed or velocity = 50km/h
time = 0.5 h
the equation will be done directly because it's already in it's SI units
distance = 50km/h x 0.5h
hour cancels hour and the equation remains = 50km x 0.5
Ans = 25 km
the train will move 25 km far in 0.5h
C)at the vertex of the mirror