Agitation, or stirring of the solute in the solvent increases the solubility of the solution
<span>What caused the bubbles to form when you added the catalyses to the hydrogen peroxide and water mixture at 40 °C? A. Catalyses activity heated the solution to its boiling point. B. Hydrogen gas formed during the formation of hydrogen peroxide. C. Oxygen gas formed during the decomposition of hydrogen peroxide.
This would be the water, mixture.</span>
Answer:
%age Yield = 51.45 %
Solution:
Step 1: Convert Kg into g
68.5 Kg CO = 68500 g CO
8.60 Kg H₂ = 8600 g
Step 2: Find out Limiting reactant;
The Balance Chemical Equation is as follow;
CO + 2 H₂ → CH₃OH
According to Equation,
28 g (1 mol) CO reacts with = 4 g (2 mol) of H₂
So,
68500 g CO will react with = X g of H₂
Solving for X,
X = (68500 g × 4 g) ÷ 28 g
X = 9785 g of H₂
It shows 9785 g H₂ is required to react with 68500 g of CO but we are provided with 8600 g of H₂ which is less than required. Therefore, H₂ is provided in less amount hence, it is a Limiting reagent and will control the yield of products.
Step 3: Calculate Theoretical Yield
According to equation,
4 g (2 mol) H₂ reacts to produce = 32 g (1 mol) Methanol
So,
8600 g H₂ will produce = X g of CH₃OH
Solving for X,
X = (8600 g × 32 g) ÷ 4 g
X = 68800 g of CH₃OH
Step 4: Calculate %age Yield
%age Yield = Actual Yield ÷ Theoretical Yield × 100
Putting Values,
%age Yield = 3.54 × 10⁴ g ÷ 68800 g × 100
%age Yield = 51.45 %
64 divided by 4 is 16, so 16 km every 15 minutes.
15 x 3 is 45, so the distance is 16 x 3, and 16 x 3 equals 48.
It has traveled 48 km after traveling for 45 minutes. Hope this helped :)
Answer:
Pressure for H₂ = 11.9 atm
Option 5.
Explanation:
We determine the complete reaction:
2Al(s) + 6HCl(aq) → 2AlCl₃(aq) + 3H₂(g)
As we do not know anything about the HCl, we assume that the limiting reactant is the Al and the acid is the excess reagent.
Ratio is 2:3.
2 moles of Al, can produce 3 moles of hydrogen
Therefore 4.5 moles of Al must produce (4.5 . 3) / 2 = 6.75 moles
Now we can apply the Ideal Gases law to find the H₂'s pressure
P . V = n . R . T → P = (n . R .T) / V
We replace data: (6.75 mol . 0.082L.atm/mol.K . 300K) / 14L
Pressure for H₂ = 11.9 atm