A plane mirror always forms a virtual image. the image and the object are the same distance from a flat mirror, the image size is the same as the object, and the image is upright!
The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
The food substance being used which turned Fehling's solution to brick red is a reducing sugar.
<h3>What is Fehling's solution?</h3>
This is an indicator which is used to test for the presence of reducing sugar or aldehydes in a solution.
Brick red precipitate of copper(I) oxide is formed when it tests positive to compounds such as glucose etc.
Read more about Fehling solution here brainly.com/question/3262179
#SPJ1
Answer:
Please check the attached file for the diagram
Explanation:
The velocity of the of the rowboat
through the river is the resultant velocity. It is obtained taking a vector sum of the velocity in still water and the velocity of the river.
There are several ways to take this vector sum, but the question makes it simple for us to use Pythagoras's theorem because the East and North directions are perpendicular to each other.
Hence;


Answer: Hello the missing piece of your question is attached
question : Determine mass of steam that has entered ( in kg )
answer : 0.206 kg
Explanation:
V1 = 0.1 m^3 ,
v' = V1 / m1 = 0.1 / 0.6 = 0.167 m^3/kg
V2 = 0.2 m^3
using the steam tables
at ; P = 1000 kPa, v' = 0.167 m^3/kg
U1 = 2321 KJ/kg
at ; P = 1000 kPa , T2 = 280°C
v'2= 0.2481 m^3kg
U2 = 2760.6
at ; P = 5MPa , T = 500°C
h1 = 3434.7 KJ/Kg
calculate final mass ( m2 )
M2 = V2 / v'2
= 0.2 / 0.2481 = 0.806 kg
therefore the mass added = m2 - m1
= 0.806 - 0.6 = 0.206 kg