Moles of water atoms = mass/molecular weight = 105/18 = 5.83 mol. Number of moles of hydrogen in water = 2 x moles of water = 11.66. Number of H atoms in water = moles of hydrogen x 6.02 x 10^23 = 7.019 x 10^24 ~ 7.02 x 10^24 atoms. Hope this helps.
Answer:
1) correct
2) incorrect
3) correct
4)incorrect
Explanation:
1) A Lewis acid is a substance that accepts a nonbonding pair of electrons.
A Bronsted-Lowry acid is a substance that donates a proton H⁺
Since the donation of a proton involves the acceptance of a pair of electrons, every Bronsted-Lowry acid is also a Lewis acid.
2)A Lewis acid not necessarily needs to have a proton to be donated.
3) Conjugated acids of weak bases are strong acids and conjugated acids of strong bases are weak acids.
4)K⁺ comes from a strong base, therefore is does not have an acidic behaviour.
The original sample was a compound because it was composed of two different elements and was not purely one element
Electrons are orbiting around the nucleus in a specific energy level as described in Bohr's atomic model. There are 7 energy levels all in all; 1 being the strongest and nearest to the nucleus, and 7 being the weakest and farthest away from the nucleus. Electron can transfer from one energy level to another. If it increases energy, it absorbs energy. If it goes down an energy level, it emits energy in the form of light. This light can be measure in wavelength through the Rydberg equation:
1/λ =R(1/n₁² -1/n₂²), where
λ is the wavelength
R is the Rydberg constant equal to 1.097 × 10⁻7<span> per meter
n</span>₁ and n₂ are the energy levels such that n₂>n₁
In the Paschen series is an emission spectrum of hydrogen when the energy level is at least n=4. So, this covers n=4 to n=7.
1/λ =(1.097 × 10⁻7)(1/4² -1/7²)
λ = 216.57 ×10⁻⁶ m or 216.57 μm