Answer: -
15.55 M
35.325 molal
Explanation: -
Let the volume of the solution be 1000 mL.
Density of nitric acid = 1.42 g/ mL
Total Mass of nitric acid Solution = Volume of nitric acid x Density of nitric acid
= 1000 mL x 1.42 g/ mL
= 1420 g.
Percentage of HNO₃ = 69%
Amount of HNO₃ = 
= 979.8 g
Molar mass of HNO₃ = 1 x 1 + 14 x 1 + 16 x 3 = 63 g /mol
Number of moles of HNO₃ = 
= 15.55 mol
Molarity is defined as number of moles per 1000 mL
We had taken 1000 mL as volume and found it to contain 15.55 moles.
Molarity of HNO₃ = 15.55 M
Mass of water = Total mass of nitric acid solution - mass of nitric acid
= 1420 - 979.8
= 440.2 g
So we see that 440.2 g of water contains 15.55 moles of HNO₃
Molality is defined as number of moles of HNO₃ present per 1000 g of water.
Molality of HNO₃ = 
= 35.325 molal
Answer:
Atoms consist of three basic particles: protons, electrons, and neutrons. The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged).
Explanation:
Beef and cheddar I believe!!!
The molecule with same molecular formula but different arrangement of atoms is said to be an isomer.
When 2,2-dimethylbutane reacts with chlorine in the presence of light gives three isomers that is
(3-chloro-2,2-dimethylbutane),
(1-chloro-2,2-dimethylbutane) and
(1-chloro-3,3-dimethylbutane).
In above case, the molecular formula of all isomers are same i.e.
but chlorine is arranged in different positions of carbon. Thus, results isomers.
The reaction is shown in the image.
6 miles of H2O is equal to 12 Hydrogen molecules and 6 oxygen molecules. Equaling 18 in total.