There are 1,69*10^2^4 molecules. Hope this helps. This was a hard question so if im right can u give brainliest?
Answer-Figure P38.63a
is a three-dimensional sketch of a birefringent crystal. The dotted lines illustrate how a thin, parallefaced slab of material could be cut from the larger specimen with the crystal’s optic axis parallel to the faces of the plate.”
Sorry if it’s it correct
Explanation:
Molar mass of HBr = 81 g/mol
Molar mass of nitrogen dioxide gas = 46 g/mol
Molar mass of ethane = 30 g/mol
Graham's Law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:

So, the gas with least molar mass will effuse out fastest from the container and that is ethane gas.
The formula for average kinetic energy is:

where,
k = Boltzmann’s constant = 
T = temperature = 273.15 K ( at STP)
As we can see from the formula that kinetic energy depends upon only temperature of the gas molecule.
So, from this we can say that all the gas molecules have the same average kinetic energy at this temperature.
Answer:
See explanation
Explanation:
I'm assuming you're asking about intensive properties. These properties only depend on the type of material, not the amount. Examples include color, temperature, boiling point, and hardness.
Answer:
6.75 × 10⁻⁸is the value of the equilibrium constant at this temperature.
Explanation:
2H₂O(g) ⇄ 2H₂(g) + O₂(g)
Partial pressure of H₂O = 0.0500 atm
Partial pressure of H₂ = 0.00150 atm
Partial pressure of O₂ = 0.00150 atm
The expression of Kp for the given chemical equation is:
![K_p = \frac{[H_2]^2[O_2]}{H_2O}](https://tex.z-dn.net/?f=K_p%20%3D%20%5Cfrac%7B%5BH_2%5D%5E2%5BO_2%5D%7D%7BH_2O%7D)

6.75 × 10⁻⁸is the value of the equilibrium constant at this temperature