Answer:
The acceleration of the collar is 10 m/s²
Explanation:
Given;
mass of the collar, m = 1 kg
applied force on the bar, F = 10 N
The acceleration of the collar can be calculated by applying Newton's second law of motion;
F = ma
where;
F is the applied force
m is mass of the object
a is the acceleration
a = F / m
a = 10 / 1
a = 10 m/s²
Therefore, the acceleration of the collar is 10 m/s²
Answer:
Output voltage is 1.507 mV
Solution:
As per the question:
Nominal resistance, R = 
Fixed resistance, R = 
Gauge Factor, G.F = 2.01
Supply Voltage, 
Strain, 
Now,
To calculate the output voltage,
:
WE know that strain is given by:

Thus

Now, substituting the suitable values in the above eqn:


Red clothes look red because they REFLECT the red light, and absorb light of other colors.
Explanation:
Assuming the wall is frictionless, there are four forces acting on the ladder.
Weight pulling down at the center of the ladder (mg).
Reaction force pushing to the left at the wall (Rw).
Reaction force pushing up at the foot of the ladder (Rf).
Friction force pushing to the right at the foot of the ladder (Ff).
(a) Calculate the reaction force at the wall.
Take the sum of the moments about the foot of the ladder.
∑τ = Iα
Rw (3.0 sin 60°) − mg (1.5 cos 60°) = 0
Rw (3.0 sin 60°) = mg (1.5 cos 60°)
Rw = mg / (2 tan 60°)
Rw = (10 kg) (9.8 m/s²) / (2√3)
Rw = 28 N
(b) State the friction at the foot of the ladder.
Take the sum of the forces in the x direction.
∑F = ma
Ff − Rw = 0
Ff = Rw
Ff = 28 N
(c) State the reaction at the foot of the ladder.
Take the sum of the forces in the y direction.
∑F = ma
Rf − mg = 0
Rf = mg
Rf = 98 N