A system is a part of the <em>physical</em> universe defined <em>arbitrarily</em> for observation purposes.
Boundaries are a part of the <em>physical</em> universe that are around the system.
In a scientific sense, a system is a part of the <em>physical</em> universe whose boundaries, that is, the limit between the system and its surroundings, are defined <em>arbitrarily</em> for observation purposes.
A system contains at least a model, represented in a phenomenological way, and it can be isolated (no mass nor energy interactions), closed (no mass interactions) or open.
The surroundings are a part of the <em>physical</em> universe that are around the system.
An example is a coffee-maker, where coffee-maker the system and air represents the surroundings, the coffee-maker receives energy from a heat source to warm up itself and releases part of such energy to the air.
We kindly invite to check this question on systems and surroundings: brainly.com/question/6044762
<u>Answer:</u> The volume of NaOH solution required to reach the half-equivalence point is 0.09 mL
<u>Explanation:</u>
The chemical equation for the dissociation of butanoic acid follows:

The expression of
for above equation follows:
![K_a=\frac{[CH_3CH_2CH_2COO^-][H^+]}{[CH_3CH_2CH_2COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BCH_3CH_2CH_2COO%5E-%5D%5BH%5E%2B%5D%7D%7B%5BCH_3CH_2CH_2COOH%5D%7D)
We are given:
![[CH_3CH_2CH_2COOH]=0.888M\\K_a=1.54\times 10^{-5}](https://tex.z-dn.net/?f=%5BCH_3CH_2CH_2COOH%5D%3D0.888M%5C%5CK_a%3D1.54%5Ctimes%2010%5E%7B-5%7D)
![[CH_3CH_2CH_2COO^-]=[H^+]](https://tex.z-dn.net/?f=%5BCH_3CH_2CH_2COO%5E-%5D%3D%5BH%5E%2B%5D)
Putting values in above expression, we get:
![1.54\times 10^{-5}=\frac{[H^+]^2}{0.888}](https://tex.z-dn.net/?f=1.54%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%5BH%5E%2B%5D%5E2%7D%7B0.888%7D)
![[H^+]=-0.0037,0.0037](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D-0.0037%2C0.0037)
Neglecting the negative value because concentration cannot be negative
To calculate the volume of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is butanoic acid
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

Hence, the volume of NaOH solution required to reach the half-equivalence point is 0.09 mL
Answer:
2.00 × 10⁻³ g
Explanation:
Step 1: Write the balanced decomposition reaction
2 NaHCO₃ ⇒ Na₂CO₃ + CO₂ + H₂O
Step 2: Calculate the moles corresponding to 0.0118 g of Na₂CO₃
The molar mass of Na₂CO₃ is 105.99 g/mol.
0.0118 g × 1 mol/105.99 g = 1.11 × 10⁻⁴ mol
Step 3: Calculate the moles of H₂O produced with 1.11 × 10⁻⁴ moles of Na₂CO₃
The molar ratio of Na₂CO₃ to H₂O is 1:1. The moles of H₂O produced are 1/1 × 1.11 × 10⁻⁴ mol = 1.11 × 10⁻⁴ mol.
Step 4: Calculate the mass corresponding to 1.11 × 10⁻⁴ moles of H₂O
The molar mass of H₂O is 18.02 g/mol.
1.11 × 10⁻⁴ mol × 18.02 g/mol = 2.00 × 10⁻³ g
Answer:
0.371
Explanation:
number of moles = mass / Ar
= 23.8g / 32.1 + (16.0 × 2)
= 0.37129485179 = 0.371 (3 s.f).
hope it helps :)
1st qn - B
2nd qn - A
Last qn - Yes