Answer: The end point of a spring oscillates with a period of 2.0 s when a block with mass m is attached to it. When this mass is increased by 2.0 kg, the period is found to be 3.0 s. Then the mass m is 0.625kg.
Explanation: To find the answer, we need to know more about the simple harmonic motion.
<h3>
What is simple harmonic motion?</h3>
- A particle is said to execute SHM, if it moves to and fro about the mean position under the action of restoring force.
- We have the equation of time period of a SHM as,

- Where, m is the mass of the body and k is the spring constant.
<h3>How to solve the problem?</h3>

- We have to find the value of m,


Thus, we can conclude that, the mass m will be 0.625kg.
Learn more about simple harmonic motion here:
brainly.com/question/28045110
#SPJ4
Deer depend on plants to survive because they are herbivores. Herbivores are animals that only eats plants and fruits in order to survive. Deer's meal includes grass and evergreen plants. If grass is unavailable, they eat whatever food like fallen leaves, twigs, bushes and other woody plants.
1) At the moment of being at the top, the piston will not only tend to push the penny up but will also descend at a faster rate at which the penny can reach in 'free fall', in that short distance. Therefore, at the highest point, the penny will lose contact with the piston. Therefore the correct answer is C.
2) To solve this problem we will apply the equations related to the simple harmonic movement, hence we have that the acceleration can be defined as

Where,
a = Acceleration
A = Amplitude
= Angular velocity
From a reference system in which the downward acceleration is negative due to the force of gravity we will have to



From the definition of frequency and angular velocity we have to




Therefore the maximum frequency for which the penny just barely remains in place for the full cycle is 2.5Hz