Answer: 750Kg
Explanation:
Recall that force is the product of the mass M, of an object moving at a uniform acceleration.
i.e Force = Mass x Acceleration
In this case, Mass = ?
Force = 3.00 x 10^3 N = (3.00 x 1000N)
= 3000N
Uniform acceleration = 4.00m/s^2
Force = Mass x Acceleration
3000N = Mass x 4.00m/s^2
Mass = (3000N/4.00m/s^2)
Mass = 750Kg (The SI unit of mass is kilograms)
Thus, the mass of the car is 750Kg
Answer:
Train accaleration = 0.70 m/s^2
Explanation:
We have a pendulum (presumably simple in nature) in an accelerating train. As the train accelerates, the pendulum is going move in the opposite direction due to inertia. The force which causes this movement has the same accaleration as that of the train. This is the basis for the problem.
Start by setting up a free body diagram of all the forces in play: The gravitational force on the pendulum (mg), the force caused by the pendulum's inertial resistance to the train(F_i), and the resulting force of tension caused by the other two forces (F_r).
Next, set up your sum of forces equations/relationships. Note that the sum of vertical forces (y-direction) balance out and equal 0. While the horizontal forces add up to the total mass of the pendulum times it's accaleration; which, again, equals the train's accaleration.
After doing this, I would isolate the resulting force in the sum of vertical forces, substitute it into the horizontal force equation, and solve for the acceleration. The problem should reduce to show that the acceleration is proportional to the gravity times the tangent of the angle it makes.
I've attached my work, comment with any questions.
Side note: If you take this end result and solve for the angle, you'll see that no matter how fast the train accelerates, the pendulum will never reach a full 90°!
2 someone's glasses could fall of because of the inertia
roller coaster is in motion but your glasses are opposing and resisting that motion due to inertia....
1 there is a possibility that electrons move from wheels to the rail and vice versa which also means that it is producing some kind of electrical energy
3 question can't answer
Here is my step-by-step-work. Let me know if you have any questions! :)
Using the precise speed of light in a vacuum (

), and your given distance of

, we can convert and cancel units to find the answer. The distance in m, using

, is

. Next, for the speed of light, we convert from s to min, using

, so we divide the speed of light by 60. Finally, dividing the distance between the Sun and Venus by the speed of light in km per min, we find that it is
6.405 min.