Answer:
The answer to your question is Argon
Explanation:
Electron configuration given 1s² 2s² 2p⁶ 3s² 3p⁶
To find the element whose electron configuration is given, we can do it by two methods.
Number 1. Sum all the exponents the result will give you the atomic number of the element.
2 + 2 + 6 + 2 + 6 = 18
The element with an atomic number of 18 is Argon.
Number 2. Look at the last terms of the electronic configuration
3s² 3p⁶
Number three indicates that this element is in the third period in the periodic table.
Sum the exponents 2 + 6 = 8
Number 8 indicates that this element is the number 8 of that period without considering the transition elements.
The element with these characteristics is Argon.
Answer:
We can use heat = mcΔT to determine the amount of heat, but first we need to determine ΔT. Because the final temperature of the water is 55°C and the initial temperature is 20.0°C, ΔT is as follows:
ΔT = Tfinal − Tinitial = 55.0°C − 20.0°C = 35.0°C
given the specific heat of water as 1 cal/g·°C. Substitute the known values into heat = mcΔT and solve for amount of heat:
= heat=(75.0 g)(1 cal/ g· °C )(35.0°C) =
= 75x1x35=2625 cal
Answer:
435.38 L
Explanation:
From the question given above, the following data were obtained:
Initial mole (n₁) = 3.25 mole
Initial volume (V₁) = 100 L
Final mole (n₂) = 14.15 mole
Final volume (V₂) =?
The final volume occupied by the gas can be obtained as follow:
V₁/n₁ = V₂/n₂
100 / 3.25 = V₂ / 14.15
Cross multiply
3.25 × V₂ = 100 × 14.15
3.25 × V₂ = 1415
Divide both side by 3.25
V₂ = 1415 / 3.25
V₂ = 435.38 L
Thus, the final volume of the gas is 435.38 L
Answer is only B.
<span>it becomes more stable</span>
Answer:
To find the number of neutrons, subtract the number of protons from the mass number. number of neutrons
Explanation: