9514 1404 393
Answer:
A1 = 3A, A2 = 1.5A
Effective resistance = 2Ω
Explanation:
When the switch is closed, the voltage across each resistor is 6V, so the current through it (A2) is ...
A2 = 6V/(4Ω) = 1.5A
There are two parallel paths, each with that current, so the current from the battery is ...
A1 = A2 +A2 = 1.5A +1.5A = 3.0A
Then the effective resistance is ...
Reff = 6V/(3.0A) = 2.0Ω
The solution to the circuit is ...
A1 = 3A, A2 = 1.5A
Effective resistance = 2Ω
#21
- initial velocity=u=5m/s
- Time=t=2s
- Acceleration=a=1.3m/s²
According to first equation of kinematics
- v=u+at
- v=5+1.3(2)
- v=5+2.6
- v=7.6m/s
#22
#a
- v1=2+3(3)=2+9=11m/s
- v2=-8-4(3)=-20m/s
- v3=1-5(3)=-14m/s
The order is
#b
for speed find absolute velocity
- S1=|11|=11m/s
- S2=|-20|=20m/s
- S3=|-14|=14m/s
So order is
S1<S3<S2
That's a formula that shows the relationship between three quantities ...
weight, mass, and acceleration. If you know any two of them, then you
can use this formula to find the one you don't know.
Examples:
==> I have a rock with 2 kilograms of mass.
The gravitational acceleration on Earth is 9.8 m/s² .
How much does my rock weigh on Earth ?
Weight = (mass) x (grav acceleration)
= (2 kg) x (9.8 m/s²)
= 19.6 newtons
(about 4.41 pounds)
==> My brother weighs 770 newtons (about 173 pounds) on Earth.
What is his mass ?
Weight = (mass) x (grav acceleration)
770 newtons = (mass) x (9.8 m/s²)
Divide each side
by 9.8 m/s²: 770 newtons / 9.8 m/s² = mass
78.57 kilograms = mass
==> When I went to the Moon, I took along my 2-kilogram rock.
I weighed my rock on the Moon.
It weighs 3.25 newtons (about 0.73 pound) there.
What is the gravitational acceleration on the Moon ?
Weight = (mass) x (grav acceleration)
3.25 newtons = (2 kg) x (acceleration)
Divide each side
by 2 kilograms: (3.25 newtons)/(2 kg) = acceleration
1.63 m/s² = grav acceleration on the Moon
Answer:
The impression of the image on the retina lasts for about 1/16th of a second after the removal of the object. If a burning stick of incense is revolved at a rate of more than sixteen revolutions per second, we see a circle of red light due to persistence of vision.
Explanation: