Answer:
part (a) 
Part (b) 
Explanation:
Given,
- Mass of the larger disk =

- Mass of the smaller disk =

- Radius of the larger disk =

- Radius of the smaller disk =

- Mass of the block = M = 1.60 kg
Both the disks are welded together, therefore total moment of inertia of the both disks are the summation of the individual moment of inertia of the disks.

part (a)
Given that a block of mass m which is hanging with the smaller disk,
Let 'T' be 'a' be the tension in the string and acceleration of the block.
From the free body diagram of the smaller block,

From the pulley,

From the equation (1) and (2),

part (b)
Above expression for the acceleration of the block is only depended on the radius of the pulley.
Radius of the larger pulley = 
Let
be the acceleration of the block while connecting to the larger pulley.
Answer:

Explanation:
The proton is under a linear motion with constant acceleration. So, we use the kinemtic equations to calculate its final speed. We know its acceleration, its initial speed and its traveled distance. Thus, we use the following equation:

Answer:
F = 309.24 N
Explanation:
Given that,
Charge on a strom cloud, q₁ = 0.055 C
The charge gained by the top of a tree, q₂ = -0.006 C
The cloud moves to 98 meters above the tree.
We need to find the amount of force between the cloud and the tree. The electrical force between two charges is given by :

So, the force between the cloud and the tree is equal to 309.24 N.
Answer:
7500 m/s
Explanation:
We can use the equation velocity of a wave equals wavelength times frequency. Therefore, v = wavelength*f = (25 m)(300 Hz) = m/s7,500