In the case of the liquid meniscus, a concave meniscus that is what one usually observes takes place when the molecules of the liquid are fascinated towards the container. This takes place with water and a glass tube. A convex meniscus takes place when the molecules exhibit a stronger attraction with each other in comparison to the container, as in the case of glass and mercury.
The shape of the liquid meniscus is determined by the relative magnitudes of the cohesive forces in the liquid and adhesive forces between the liquid and its container.
The mass of a sample of alcohol is found to be = m = 367 g
Hence, it is found out that by raising the temperature of the given product, the mass of alcohol would be 367 g.
Explanation:
The Energy of the sample given is q = 4780
We are required to find the mass of alcohol m = ?
Given that,
The specific heat given is represented by = c = 2.4 J/gC
The temperature given is ΔT = 5.43° C
The mass of sample of alcohol can be found as follows,
The formula is c = 
We can drive value of m bu shifting m on the left hand side,
m = 
mass of alcohol (m) = 
m = 367 g
Therefore, The mass of the given sample of alcohol is
m = 367g
It requires 4780 J of heat to raise the temperature by 5.43 C in the process which yields a mass of 367 g of alcohol.
1 mole ----------- 22.4 L ( at STP )
3.5 mols --------- ?
V = 3.5 x 22.4 / 1
V = 78.4 L
hope this helps!
Answer:
See explanation
Explanation:
The essence of chemical bonding is in order to attain minimum energy. The minimum energy state is the most stable state of a chemical system.
As the distance of separation between atoms decreases, the potential energy of the system decreases accordingly.
An optimum distance is reached when the two atoms attain the lowest potential energy. This is designated as the bond distance of the two atoms.
Hence two atoms have lower potential energy when bonded than when separated at large distance.