The six basic elements of weather include temperature, humidity, atmospheric pressure, wind, precipitation, and cloudiness.
~I knew this was asked 5 days ago, but I hope this still helps.
Answer:
2 moles
Explanation:
The following were obtained from the question:
Molarity = 0.25 M
Volume = 8L
Mole =?
Molarity is simply defined as the mole of solute per unit litre of solution. It is represented mathematically as:
Molarity = mole of solute/Volume of solution.
With the above equation, we can easily find the number of mole of MgCl2 present in 8 L of 0.25 M MgCl2 solution as follow:
Molarity = mole of solute/Volume of solution.
0.25 = mole of MgCl2 /8
Cross multiply to express in linear form
Mole of MgCl2 = 0.25 x 8
Mole of MgCl2 = 2 moles
Therefore, 2 moles of MgCl2 are present in 8 L of 0.25 M MgCl2 solution
Answer:
Compound consist of molecules that are identical, this molecules are made up of atoms of two or more elements. An element is identified based on the atomic property of the element. Water as a compound is composed of 2 Hydrogen atom to 1 oxygen atom and the molecule is H2O.
Hey there!:
density = 3.51 g/cm³
Volume = 0.0270 cm³
Therefore:
D = m / V
3.51 = m / 0.0270
m = 3.51 * 0.0270
m = 0.09477 g
Answer:
Final temperature: 659.8ºC
Expansion work: 3*75=225 kJ
Internal energy change: 275 kJ
Explanation:
First, considering both initial and final states, write the energy balance:
Q is the only variable known. To determine the work, it is possible to consider the reversible process; the work done on a expansion reversible process may be calculated as:
The pressure is constant, so:
(There is a multiplication by 100 due to the conversion of bar to kPa)
So, the internal energy change may be calculated from the energy balance (don't forget to multiply by the mass):
On the other hand, due to the low pressure the ideal gas law may be appropriate. The ideal gas law is written for both states:
Subtracting the first from the second:

Isolating
:

Assuming that it is water steam, n=0.1666 kmol

ºC