Answer:
I think 2.6 sorry if its wrong
<span>293 grams
The formula for the wavelength of a massive particle is
λ = h/p
where
λ = wavelength
h = Plank constant (6.626070040Ă—10^â’34 J*s)
p = momentum (mass times velocity)
So let's solve for momentum and from there get the mass
λ = h/p
λp = h
p = h/λ
Substitute known values and solve
p = 6.626070040Ă—10^â’34 J*s/3.45Ă—10^-34 m
p = 1.92 J*s/m
Since momentum is the product of mass and velocity, we have
p = M * V
p/V = M
So substitute again, and solve.
p/V = M
1.92 J*s/m / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
1.92 kg*m/s / 6.55 m/s = M
0.293 kg = M
So the mass is 293 grams</span>
M=D*V,
V=m/D
m=15 g
D=3 g/ml
V=15 g/3 g/ml=5 ml
Answer:
Water applied to the surface of a relatively dry soil infiltrates quickly due to the affinity of the soil particles for water. As time passes and the soil becomes wet, the force of gravity becomes the dominant force causing water to move.
Explanation:
<span>
Phenobarbital is derivative of
Barbituric Acid and Barbituric Acid is derivative of
Urea. (structures shown in Fig below)
Urea has H</span>₂N- group attached to Carbonyl Group (C=O), and such class of comounds conataining H₂N-C=O bond are called as Amides.
Result: So, <span>Phenobarbital belongs to
Amides.</span>