Answer:
It may not be at the sea level
Explanation:
The reason here is water only boils at sea level. This means that if you move water to a different height, say top of a mountain, the boiling temperature of water would change. This is due to the pressure drop at high place. The drop of pressure would make it harder to transform water liquid to gas, thus requiring more temperature.
The block has the greatest average power provided is bock m.
<h3>What is instantaneous power?</h3>
- This is the product of force and velocity exerted on an object.
Mathematically instantaneous power is calculated as;
P = Fv
where;
- F is the applied force
- v is the velocity
Both blocks (m and 2m) will experience the same force but different velocity.
The smaller block (m) will experience greater velocity.
Thus, the block has the greatest average power provided is bock m.
Learn more about instantaneous power here: brainly.com/question/8893970
Answer:
Explanation:19,2 or 0/4 or 5 or 40,4
Answer:a) 34.5 N; b) 24.5 N; c) 10 N; d) 1J
Explanation: In order to solve this problem we have to used the second Newton law given by:
∑F= m*a
F-f=m*a where f is the friction force (uk*Normal), from this we have
F= m*a+f=5 Kg*2 m/s^2+0.5*5Kg*9.8 m/s^2= 34.5 N
then f=uk*N=0.5*5Kg*9.8 m/s^2= 24.5N
the net Force = (34.5-24.5)N= 10 N
Finally the work done by the net force is equal to kinetic energy change so
W=∫Force net*dr= 10 N* 0.1 m= 1J
Answer:
The magnitude of the electric force on a protein with this charge is 
Explanation:
Given that,
Electric field = 1500 N/C
Charge = 30 e
We need to calculate the magnitude of the electric force on a protein with this charge
Using formula of electrostatic force

Where, F = force
E = electric field
q = charge
Put the value into the formula


Hence, The magnitude of the electric force on a protein with this charge is 