Answer: D
Explanation:
London forces become stronger as the atom in question becomes larger, and to a smaller degree for large molecules. [4] This is due to the increased polarizability of molecules with larger, more dispersed electron clouds. The polarizability is a measure of ease with which electrons can be redistributed; a large polarizability implies that the electrons are more easily redistributed. This trend is exemplified by the halogens (from smallest to largest: F 2 , Cl2 , Br 2 , I 2 ). The same increase of dispersive attraction occurs within and between organic molecules in the order RF<RCL<RBr<RI, or with other more polarizable heteroatoms. [5] Fluorine and chlorine are
gases at room temperature, bromine is a liquid, and iodine is a solid. The London forces are thought to be arise from the motion of electrons.
Hey there!
Compounds with ionic bonds have higher melting points because of the forces needed to break through the strong forces of attraction holding it together.
Compounds with covalent bonds have lower melting points because less energy is needed to break the weaker forces of attraction.
So, your answer is C. Compound 1 is ionic, and compound 2 is molecular.
Hope this helps!
Answer: .309 moles (rounded to the nearest thousandth)
Explanation: divide your atoms by (6.022 x 10x^{23})
The answer is that compounds are formed when elements are joined and held together by strong forces called chemical bonds.Covalent bonds share electrons between atoms in order to fill their electron shells. In the compound, molecules are held together by the attraction between the nucleus and the shared electrons. (I got this from the internet so credits to the internet)