5.610^-26 m is closest to the wavelength of the light.
E=K.E - Work function
hc/λ=1.10-4.65
hc/λ=3.50
λ=hc/3.50
λ=6.626×10 −34J⋅s×3×10^8
λ=5.610^-26 m
Because the relationship between wave frequency and wavelength is inverse, gamma rays have extremely short wavelengths that are only a fraction of the size of atoms, whereas other wavelengths can reach as far as the universe. Regardless of the medium they travel through, electromagnetic radiation's wavelengths are typically expressed in terms of the vacuum wavelength, even though this isn't always stated explicitly.
The wavelength of electromagnetic radiation affects its behavior. The speed of light is equal to wavelength times frequency. Frequency multiplied by the Planck constant equals energy. 1/wavelength is the wave number in cm. Along with the wavelengths of different parts of the electromagnetic spectrum, a rough estimation of the wavelength size is displayed.
To know more about wavelength visit : brainly.com/question/14530620
#SPJ4
Answer: 75V
Explanation:
Given that,
total resistance (Rtotal) = 150Ω
Current (I) = 0.5A
Change in electric potential (V) = ?
Recall that potential difference is the product of amount of current and the amount of resistance in the circuit. And its unit is volts.
So, apply the formula V = I x Rtotal
V = 0.5A x 150Ω
V = 75V
Thus, the change in electric potential across the circuit is 75 Volts
the answer is C. It allows citizens to submit anonymous tips to the police.
Answer:
This shows inertia because inertia is an object's resistance to change in motion. When the person (imma call them a she) who pulled the chair from under the guy did that, the chair was the one affected by the force of the girl, not the guy. The guy continued heading in the direction he was originally going, which was down.
At least, that's about how I would answer this question.
Answer:

Explanation:
Given two mass on an incline code
and
and an angle of inclination
.
. Assume that
is the weight being pulled up and
the hanging weight.
-The equations of motion from Newton's Second Law are:
where a is the acceleration.
#Substituting for
(tension) gives:

#and solving for 
which is the system's acceleration.