Answer:

Explanation:
Hello there!
In this case, according to the rules for the oxidation states in chemical reactions, it is possible to realize that lone elements have 0 and since magnesium is in group 2A, it forms the cation Mg⁺² as it loses electrons and oxygen is in group 6A so it forms the anion O⁻²; therefore resulting oxidation numbers are:

Best regards!
Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.
Atomic or hybrid orbital on the central br atom makes up the sigma bond between this br and an outer f atom in bromine trifluoride, brf3 is sp2 hybridization
Trigonal hybridization is another name for sp2 hybridization. It entails combining one's' orbital with two 'p' orbitals of equal energy to create a new hybrid orbital known as sp2. A trigonal symmetry combination of s and p orbitals that is kept at 120
One of the hybrid orbitals formed when one s orbital and two p orbitals are mathematically merged to form three new equivalent orbitals orientated toward the corners of a triangle is sp2 hybridization.
The only feasible molecule geometry for sp2 hybridized center atoms is trigonal planar. When all of the bonds are in place, the shape is trigonal planar as well.
To learn more about sp2 hybridization please visit -
brainly.com/question/6270186
#SPJ4
Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M
Answer:
Your question is somewhat poorly worded, even so what I can contribute is the statement is false, since the salt is sodium chloride, where its severe chemical formula NaCl, is a SALT not an acid and if it dissolves in water, seriously the solute of a solution, where water plays the role of the solvent
Explanation:
Sodium chloride is a binary salt, very easy to dissolve in water, it is also called the famous table salt, since it can be ingested in food even though it is not so recommended against high blood pressure conditions.