Answer:
The change in entropy of the surrounding is -146.11 J/K.
Explanation:
Enthalpy of formation of iodine gas = 
Enthalpy of formation of chlorine gas = 
Enthalpy of formation of ICl gas = 
The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(ICl)})]-[(1\times \Delta H_f_{(I_2)})+(1\times \Delta H_f_{(Cl_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28ICl%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28I_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Cl_2%29%7D%29%5D)
![=[2\times 17.78 kJ/mol]-[1\times 0 kJ/mol+1\times 62.436 kJ/mol]=-26.878 kJ/mol](https://tex.z-dn.net/?f=%3D%5B2%5Ctimes%2017.78%20kJ%2Fmol%5D-%5B1%5Ctimes%200%20kJ%2Fmol%2B1%5Ctimes%2062.436%20kJ%2Fmol%5D%3D-26.878%20kJ%2Fmol)
Enthaply change when 1.62 moles of iodine gas recast:

Entropy of the surrounding = 

1 kJ = 1000 J
The change in entropy of the surrounding is -146.11 J/K.
Answer:
The periodic table is a table displaying each element and information about the elements, for example atomic number and chemical properties. This is necessary because without it it would be very hard to find information on the elements.
It is approximately 10 ^ -10
The mass of I₂ that contains 2.57×10²⁵ molecules is 10843.52 g
From a detailed understanding of Avogadro's hypothesis, we understood 1 mole of any substance contains 6.02×10²³ molecules. This implies that 1 mole of I₂ also 6.02×10²³ molecules i.e
<h3>6.02×10²³ molecules = 1 mole of I₂</h3>
Recall:
1 mole of I₂ = 2 × 127 = 254 g
Thus,
<h3>6.02×10²³ molecules = 254 g of I₂</h3>
With the above information, we can obtain the mass of I₂ that contains 2.57×10²⁵ molecules. This is illustrated below:
6.02×10²³ molecules = 254 g of I₂
Therefore,
2.57×10²⁵ molecules = 
<h3>2.57×10²⁵ molecules = 10843.52 g of I₂</h3>
Thus, the mass of I₂ that contains 2.57×10²⁵ molecules is 10843.52 g
Learn more: brainly.com/question/24848191
The correct answer is Na > K > Rb.
The order predicted would be ionization energy of sodium is greater than the ionization energy of potassium, which is greater than the ionization energy of rubidium.
The ionization energy refers to energy, which has to be supplemented to a gaseous atom in order to withdraw an electron and produce a positive ion. The ionization energy decreases in going down a group. The cause of the decline of the ionization energy down a group is that as one moves down a group, the size of the atom increases that signifies that the valence electrons get further away from the nucleus, and thus, less energy is required to withdraw the electrons.