1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
4 years ago
7

1. A four-lane freeway (two lanes in each direction) is located on rolling terrain and has 12-ft lanes, no lateral obstructions

within 6 ft of the pavement edges, and there are two ramps within three miles upstream of the segment midpoint and three ramps within three miles downstream of the segment midpoint. A weekday directional peak-hour volume of 1800 vehicles (familiar users) is observed, with 700 arriving in the most congested 15-min period. If a LOS no worse than C is desired, determine the maximum number of heavy vehicles that can be present in the peak-hour traffic stream.

Engineering
1 answer:
otez555 [7]4 years ago
6 0

Answer:

Maximum number of vehicle = 308

Explanation:

See the attached file for the calculation.

You might be interested in
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
9. Calculate the total resistance and current in a parallel cir-
Taya2010 [7]

Answer:

  d. 2.3 ohms (5.3 amperes)

Explanation:

The calculator's 1/x key makes it convenient to calculate parallel resistance.

  Req = 1/(1/4 +1/8 +1/16) = 1/(7/16) = 16/7 ≈ 2.3 ohms

This corresponds to answer choice D.

__

<em>Additional comment</em>

This problem statement does not tell the applied voltage. The answer choices suggest that it is 12 V. If so, the current is 12/(16/7) = 21/4 = 5.25 amperes.

5 0
3 years ago
Infinitivo de vivia kkk xd
blagie [28]

Answer:

pls put a question not random letters

Explanation:

8 0
3 years ago
Another name for your computer, running the web browser program is: Web user The client The mainframe Browsing agent
timofeeve [1]

Answer:

Browsing agent

Explanation:

Hope this helps!

6 0
3 years ago
Anaircraft component is fabricated from an aluminum alloy that has a plane-strain fracture toughness of 40 MPa 1/2.It has been d
navik [9.2K]

Answer:

Yes, fracture will occur since toughness (42.4 MPa) is greater than the toughness of the material, 40MPa

Explanation:

Given

Toughness, k = 40Mpa

Stress, σ = 300Mpa

Length, l = 4mm = 4 * 10^-3m

Under which fracture occurred (i.e., σ= 300 MPa and 2a= 4.0 mm), first we solve for parameter Y (The dimensionless parameter)

Y = k/(σπ√a)

Where a = ½ of the length in metres

Y = 40/(300 * π * √(4/2 * 10^-3))

Y = 1.68 ---- Approximated

To check if fracture will occur of not; we apply the same formula.

Y = k/(σπ√a)

Then we solve for k, where

σ = 260Mpa and a = ½ * 6 * 10^-3

So,.we have

1.68 = k/(260 * π * √(6*10^-3)/2)

k = 1.68 * (260 * π * (6*10^-3)/2)

k = 42.4 MPa --- Approximately

Therefore, fracture will occur since toughness (42.4 MPa) is greater than the toughness of the material, 40 MPa

7 0
3 years ago
Read 2 more answers
Other questions:
  • 5. Assume that you and your best friend ench have $1000 to invest. You invest your money
    8·1 answer
  • The following laboratory tests are performed on aggregate samples:a. Specific gravity and absorptionb. Soundnessc. Sieve analysi
    13·1 answer
  • Danny enjoys studying transportation networks and systems. Which field of engineering should he pursue?
    11·1 answer
  • A 1 m wide continuous footing is designed to support an axial column load of 250 kN per meter of wall length. The footing is pla
    11·1 answer
  • The working section of a transonic wind tunnel has a cross-sectional area 0.5 m2. Upstream, where the cross-section area is 2 m2
    10·1 answer
  • Which best describes the body in terms of simple machines?
    6·1 answer
  • ITS FOR DRIVERS ED!!
    13·2 answers
  • g An analog voice signal, sampled at the rate of 8 kHz (8000 samples/second), is to be transmitted by using binary frequency shi
    12·1 answer
  • A flywheel made of Grade 30 cast iron (UTS = 217 MPa, UCS = 763 MPa, E = 100 GPa, density = 7100 Kg/m, Poisson's ratio = 0.26) h
    9·1 answer
  • Can someone help me LA project pls :((
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!