In order to develop this problem it is necessary to use the concepts related to the conservation of both potential cinematic as gravitational energy,


Where,
M = Mass of Earth
m = Mass of Object
v = Velocity
r = Radius
G = Gravitational universal constant
Our values are given as,



Replacing we have,




Therefore the speed of the object when striking the surface of earth is 4456 m/s
Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.
Answer:
A lake full of a larger variety of fish, frogs, and birds
Answer:
x = 6.94 m
Explanation:
For this exercise we can find the speed at the bottom of the ramp using energy conservation
Starting point. Higher
Em₀ = K + U = ½ m v₀² + m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
½ m v₀² + m g h = ½ m v²
v² = v₀² + 2 g h
Let's calculate
v = √(1.23² + 2 9.8 1.69)
v = 5.89 m / s
In the horizontal part we can use the relationship between work and the variation of kinetic energy
W = ΔK
-fr x = 0- ½ m v²
Newton's second law
N- W = 0
The equation for the friction is
fr = μ N
fr = μ m g
We replace
μ m g x = ½ m v²
x = v² / 2μ g
Let's calculate
x = 5.89² / (2 0.255 9.8)
x = 6.94 m