1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
3 years ago
13

To revise a monthly budget, changes in which categories might need to be addressed? Check all that apply.

Engineering
1 answer:
GREYUIT [131]3 years ago
5 0

Income

amount budgeted

expenses

You might be interested in
Two thousand pieces will flow through from the first machine A to the final machine F based on the given sequence of operations.
Vlad1618 [11]

The total number of trips that the vehicle has to make based on the given sequence of operation is 120 trips.

<em>"Your</em><em> </em><em>question is not complete, it seems to be missing the following information;"</em>

The sequence of operation is A - E - D - C - B - A - F

The given parameters;

  • <em>number of pieces that will flow from the first machine A to machine F, = 2,000 pieces</em>
  • <em>initial unit load specified in the first machine, L₁ = 50</em>
  • <em>final unit load, L₂ = 100 </em>
  • <em>the capacity of the vehicle = 1 unit load</em>

<em />

The given sequence of operation of the vehicle;

A - E - D - C - B - A - F

<em>the vehicle makes </em><em>6 trips</em><em> for </em><em>100</em><em> unit </em><em>loads</em>

The total number of trips that the vehicle has to make, in order to transport the 2000 pieces of the load given, is calculated as follows.

100 unit loads ----------------- 6 trips

2000 unit loads --------------- ?

= \frac{2000}{100} \times 6\\\\= 120 \ trips

Thus, the total number of trips that the vehicle has to make based on the given sequence of operation is 120 trips.

Learn more here:brainly.com/question/21468592

6 0
2 years ago
Determine the constant speed at which the cable at A must be drawn in by the motor in order to hoist the load 6 m in 1.5s
zlopas [31]

Answer:

4m/s

Explanation:

We know that power supplied by the motor should be equal to the rate at which energy is increased of the mass that is to be hoisted

Mathematically

Power_{motor} } =\frac{Energy }{time}\

We also know that Power = force x velocity      ..................(i)

The force supplied by the motor should be equal to the weight (mg) of the block since we lift the against a force equal to weight of load

=> power = mg x Velocity........(ii)

While hoisting the load at at constant speed only the potential energy of the mass increases

Thus Potential energy = Mass x g x H...................(iii)

where

g = accleration due to gravity (9.81m/s2)

H = Height to which the load is hoisted  

Equating equations (ii) and (iii) we get

m x g x v = \frac{mgh}{t}

thus we get v = H/t

Applying values we get

v = 6/1.5 = 4m/s

5 0
3 years ago
Water is flowing at a rate of 0.15 ft3/s in a 6 inch diameter pipe. The water then goes through a sudden contraction to a 2 inch
Georgia [21]

Answer:

Head loss=0.00366 ft

Explanation:

Given :Water flow rate Q=0.15 \frac{ft^{3}}{sec}

         D_{1}= 6 inch=0.5 ft

        D_{2}=2 inch=0.1667 ft

As we know that Q=AV

A_{1}\times V_{1}=A_{2}\times V_{2}

So V_{2}=\frac{Q}{A_2}

     V_{2}=\dfrac{.015}{\frac{3.14}{4}\times 0.1667^{2}}

     V_{2=0.687 ft/sec

We know that Head loss due to sudden contraction

           h_{l}=K\frac{V_{2}^2}{2g}

If nothing is given then take K=0.5

So head lossh_{l}=(0.5)\frac{{0.687}^2}{2\times 32.18}

                                    =0.00366 ft

So head loss=0.00366 ft

4 0
3 years ago
While discussing the testing of a Hall-effect switch:
sergejj [24]

Answer:

your answer is technician A

6 0
3 years ago
A 650-kN column load is supported on a 1.5 m square, 0.5 m deep spread footing. The soil below is a well-graded, normally consol
insens350 [35]

<u>Explanation:</u>

Determine the weight of footing

W_{f}=\gamma(L)(B)(D)

Where W_{f} is the weight of footing, γ is the unit weight of concrete,  L is the length of footing is the width of footing, and D is the depth of footing

Substitute 2 m \text { for } L, 1.5 m \text { for } B, 0.5 m \text { for } D \text { and } 23.6 kN / m ^{3} for γ in the equation

\begin{aligned}W_{f} &=\left(23.6 kN / m ^{3}\right)(2 m )(1.5 m )(0.5 m ) \\&=35.4 kN\end{aligned}

Therefore, the weight of the footing is 35.4 kN

Determine the initial vertical effective stress.

\sigma_{z p}^{\prime}=\gamma(D+B)-u

Here,   \sigma_{z^{p}}^{\prime} is initial vertical stress at a depth below ground surface  γ is the unit weight of soil, D is depth and u is pore water pressure.

Substitute 18 kN / m ^{3} \text { for } \gamma, 1.5 m \text { for } B, 0.5 m \text { for } D \text { and } 0 for u in the equation

\begin{aligned}\sigma_{z p}^{\prime} &=\left(18 kN / m ^{3}\right)(1.5+0.5) m -0 \\&=36 kPa\end{aligned}

Therefore, the initial vertical stress is 36 kPa

Determine the vertical effective stress.

\sigma_{z D}^{\prime}=\gamma D

Here,   \sigma_{z^{p}}^{\prime} is initial vertical stress at a depth below ground surface  γ is the unit weight of soil, D is depth and u is pore water pressure.

Substitute \(18 kN / m ^{3}\) for \(\gamma, 0.5 m\) for \(D\) and 0 for \(u\) in the equation.

\begin{aligned}\sigma_{z b}^{\prime} &=\left(18 kN / m ^{3}\right)(0.5 m )-0 \\&=9 kPa\end{aligned}

Therefore, the vertical stress at a depth below the ground surface is

9 kPa

Determine the influence factor at the midpoint of soil layer,

I_{e p}=0.5+0.1 \sqrt{\frac{q-\sigma_{s 0}^{\prime}}{\sigma_{z p}^{\prime}}}

Here I_{e p} is the influence factor at the midpoint of soil layer  \sigma_{z^{p}}^{\prime} is initial vertical stress, \sigma_{z^{p}}^{\prime} is vertical effective stress, and Q is bearing pressure

Substitute 36 kPa for \(\sigma_{z p}^{\prime}, 228.47\) kPa for \(q,\) and 9 kPa for \(\sigma_{z D}^{\prime}\) in the equation\begin{aligned}I_{\epsilon P} &=0.5+0.1 \sqrt{\frac{228.47 kPa -9 kPa }{36 kPa }} \\&=0.75\end{aligned}

Therefore the influence factor at the midpoint of the soil layer is 0.693

6 0
3 years ago
Other questions:
  • Calculate the number of atoms per cubic meter in Metal B (units atoms/m^3). Write your answer with 4 significant figures metal:
    11·1 answer
  • A 2.2-kg model rocket is launched vertically and reaches an altitude of 70 m with a speed of 30 m/s at the end of powered flight
    5·1 answer
  • A transmission line with an imperfect dielectric is connected to an ideal time-invariant voltage generator. The other end of the
    9·1 answer
  • What happens to battery when it produces current to the system
    10·1 answer
  • Name the main classes of polymer and define their characteristic properties
    15·1 answer
  • PLEASE HELP!!!!!!!!!!!!!!!!!!!!! I AM BEING TIMED!!!!!!!!!!!!!!!!!!!!!! 30 MINUTES LEFT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    7·2 answers
  • The displacement of a certain object is described by y(t) = 23 sin 5t, where t is measured in seconds. Compute its period and it
    9·1 answer
  • Name the ferrous metal that most workshop tools are made from??
    12·2 answers
  • Technician A says that 5W-30 would be better to use than 20W-50 in most vehicles in
    7·2 answers
  • A monatomic ideal gas undergoes a quasi-static process that is described by the function p(????)=p1+3(????−????1) , where the st
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!