Answer:
Saturn's differential rotation will cause the length of a day measures to be longer by 0.4 hours
Explanation:
Differential rotation occurs due to the difference in angular velocities of an object as we move along the latitude of the or as we move into different depth of the object, indicating the observed object is in a fluid form
Saturn made almost completely of gas and has differential motion given as follows
Rotation at the equator = 10 hours 14 minutes
Rotation at high altitude = 10 hours 38 minutes
Therefore;
The differential rotation = 10 hours 38 minutes - 10 hours 14 minutes
The differential rotation = 24 minutes = 24 minutes × 1 hour/(60 minutes) = 0.4 hours
The differential rotation = 0.4 hours
Therefore, the measured day at the higher altitude will be 0.4 longer than at the equator.
I think its Mercury because it's the closest to the sun.
Answer:
100
Explanation:
take note that v=d/t (velocity is distance over(divided by) time, so in this case it would be 200 (distance) divided by 2 (time) = 100
Answer:
F' = (3/2)F
Explanation:
the formula for the electric field strength is given as follows:
E = F/q
where,
E = Electric Field Strength
F = Force due to the electric field
q = magnitude of charge experiencing the force
Therefore,
F = E q ---------------- equation (1)
Now, if we half the electric field strength and make the magnitude of charge triple its initial value. Then the force will become:
F' = (E/2)(3 q)
F' = (3/2)(E q)
using equation (1)
<u>F' = (3/2)F</u>