(a) The average speed from A to B would be 1.76 metre per second and the average velocity from A to B would also be 1.76 metre per second
<span>(b) The average speed from A to C would be 1.73 metre per second and the average velocity from A to C would be 0.87 metre per second</span>
I believe the answer you are looking for is perception.
Answer:
The triboelectic charging process (a.k.a., charging by friction) results in a transfer of electrons between the two objects that are rubbed together. Rubber has a much greater attraction for electrons than animal fur.
Explanation:
HOPE IT HELP^_^
THANKS^_^
Answer:
<em><u>Assuming that the vertical speed of the ball is 14 m/s</u></em> we found the given values:
a) V₀ = 23.4 m/s
b) h = 27.9 m
c) t = 0.96 s
d) t = 4.8 s
Explanation:
a) <u>Assuming that the vertical speed is 14 m/s</u> (founded in the book) the initial speed of the ball can be calculated as follows:
<u>Where:</u>
: is the final speed = 14 m/s
: is the initial speed =?
g: is the gravity = 9.81 m/s²
h: is the height = 18 m
b) The maximum height is:
c) The time can be found using the following equation:
d) The flight time is given by:
I hope it helps you!
Answer:
Coefficient of friction between the book and floor is 0.582.
Explanation:
Using the velocity formula;
v^2 = 2as
a = v^2/(2s)
a = 1.6^2/(2*0.9)
a = 2.56/1.8
a = 1.42 m/s^2
the force necessary to give the book the acceleration is
F = ma = 3.5*1.42 (m is mass of the book i.e. 3.5 kg)
F = 4.98 N
The difference in the force is the friction force, which is
Ff = 25 - 4.98 = 20 N
Ff = mgμ
where μ is coefficient of friction and g is acceleration due to gravity that is 9.8 m/s^2
μ = Ff/mg
μ = 20/(3.5*9.81)
μ = 0.582
Coefficient of friction between the book and floor is 0.582.