Answer:
V = 22.34 L
Explanation:
Given data:
Volume of O₂ needed = ?
Temperature and pressure = standard
Number of molecules of water produced = 6.0× 10²³
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of water:
1 mole contain 6.022× 10²³ molecules
6.0× 10²³ molecules × 1 mole / 6.022× 10²³ molecules
0.99 mole
Now we will compare the moles of oxygen and water.
H₂O : O₂
2 : 1
0.996 : 0.996
Volume of oxygen needed:
PV = nRT
V = nRT/P
V = 0.996 mol × 0.0821 atm.L/mol.K × 273.15 K / 1 atm
V = 22.34 L
Answer:
The energy of a body or a system with respect to the motion of the body or of the particles in the system. Potential energy is the stored energy in an object or system because of its position or configuration. Kinetic energy of an object is relative to other moving and stationary objects in its immediate environment.
<span><span>N2</span><span>O3</span><span>(g)</span>→NO<span>(g)</span>+<span>NO2</span><span>(g)</span></span>
<span><span>[<span>N2</span><span>O3</span>]</span> Initial Rate</span>
<span>0.1 M r<span>(t)</span>=0.66</span> M/s
<span>0.2 M r<span>(t)</span>=1.32</span> M/s
<span>0.3 M r<span>(t)</span>=1.98</span> M/s
We can have the relationship:
<span>(<span><span>[<span>N2</span><span>O3</span>]/</span><span><span>[<span>N2</span><span>O3</span>]</span>0</span></span>)^m</span>=<span><span>r<span>(t)/</span></span><span><span>r0</span><span>(t)
However,
</span></span></span>([N2O3]/[N2O3]0) = 2
Also, we assume m=1 which is the order of the reaction.
Thus, the relationship is simplified to,
r(t)/r0(t) = 2
r<span>(t)</span>=k<span>[<span>N2</span><span>O3</span>]</span>
0.66 <span>M/s=k×0.1 M</span>
<span>k=6.6</span> <span>s<span>−<span>1</span></span></span>
Answer:
Zn + CuSO4 —> ZnSO4 + Cu
Explanation:
Zn is higher than Cu in electrochemical series and so will displaces Cu in solution according to the equation:
Zn + CuSO4 —> ZnSO4 + Cu
i think it is 6 valence electrons