1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kicyunya [14]
3 years ago
12

A sodium surface is illuminated with light of wavelenght 300nm. The work function of the metal is 2.4eV.

Physics
1 answer:
denis-greek [22]3 years ago
5 0

Answer:

1) 1.67eV

2) 505nm

Explanation:

The maximum kinetic energy of photoelectrons ,

 KEmax=λhc−W=(0.3×10−6)(1.6×10−19)(6.62×10−34)(3×108)eV−2.46eV=1.67eV

If λ0 is the cut-off wavelength, W=λ0hc

or λ0=Whc=2.46×1.6×10−19(6.62×10−34)(3×108)=5.05×10−7m=505×10−9=505nm

<em>We know that the work function is the minimum photon energy for taking place of photoelectric effect. </em>

You might be interested in
Jo wants to find out about floating and sinking. She puts a rubber duck and a bar of soap in a
maks197457 [2]

Answer:

the soap sinks because it is more dense than the duck.

7 0
2 years ago
The windowpanes are___________ a. opaque b. transparent c. absorbent .
kogti [31]

Answer:

The windowpanes are- transparent.

The color of the panes are due to the wavelengths of light that the glass- allows to pass through

Explanation:

Just answered the question.

4 0
3 years ago
Read 2 more answers
the amount of time for one particle of the medium to make one comlpete vibration cycle is a good description of
-Dominant- [34]
That's the definition of the PERIOD of the vibration.
It's exactly the reciprocal of the vibration's frequency.
7 0
3 years ago
Read 2 more answers
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
2 years ago
A coil of wire containing N turns is in an external magnetic field that is perpendicular to the plane of the coil and it steadil
krok68 [10]

Answer:

The Resultant Induced Emf in coil is 4∈.

Explanation:

Given that,

A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.

To find :-

find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).

So,

   Emf induced in the coil represented by formula

                          ∈  =   -N\frac{d\phi}{dt}                                  ...................(1)

                                          Where:

                                                    .   \phi = BAcos\theta     { B is magnetic field }

                                                                                 {A is cross-sectional area}

                                                    .  N = No. of turns in coil.

                                                    .  \frac{d\phi}{dt} = Rate change of induced Emf.

Here,

Considering the case :-

                                    N1 = 2N  &      \frac{d\phi1}{dt} = 2\frac{d\phi}{dt}

Putting these value in the equation (1) and finding the  new emf induced (∈1)

                           

                                      ∈1 =-N1\times\frac{d\phi1}{dt}

                                      ∈1 =-2N\times2\frac{d\phi}{dt}

                                       ∈1 =4 [-N\times\frac{d\phi}{dt}]

                                        ∈1 = 4∈             ...............{from Equation (1)}      

Hence,

The Resultant Induced Emf in coil is 4∈.        

                           

8 0
3 years ago
Other questions:
  • An electron is located on a pinpoint having a diameter of 3.52 µm. What is the minimum uncertainty in the speed of the electron?
    15·1 answer
  • 6 use superposition to find voltage v(t) across the 100 ohm resistor
    9·1 answer
  • What happens when the temperature of the air cools?
    13·1 answer
  • The radius of Mercury (from the center to just above the atmosphere) is 2440 km (2440 × 103 m), and its mass is 3 × 1023 kg. An
    7·1 answer
  • A storage tank contains a liquid at depth y where y=0 when the tank is half full. liquid is withdrawn at a constant flow rate q
    10·1 answer
  • When you view the pendulum’s swing, it shows that at the very top of the swing KE = 0. What does that tell you about the pendulu
    11·2 answers
  • I need this done pls
    11·1 answer
  • Convection is the transfer of energy by the motion of heated particles in a fluid. according to this information,which statement
    13·1 answer
  • What horizontal velocity should be given to a ball hanging on a 4.9 m long thread so that it slides to the height of the hanger
    10·1 answer
  • a generator uses loops of area 0.239 m^2, rotating 373 rad/s in a 0.0639 t magnetic field. how many loops must the coil have to
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!