Answer:
The answer to your question is : vf = 15.18 m/s
Explanation:
Data
vo = 24 m/s
d = 120 m
vf = ? when d = 60.0 m
Formula
vf² = vo² + 2ad
For d =100m
a = (vf² - vo²) / 2d
a = (0 -24²) / 2(100)
a = -576/200
a = 2.88 m/s²
Now, when d = 60
vf² = (24)² - 2(2.88)(60)
vf² = 576 - 345.6
vf² = 230.4
vf = 15.18 m/s
Answer:
False
Explanation:
(I guess if it were written "properly" it would be ax=bx implies a=b).
Given the axioms we were given, it would seem that the statement should be true, no?
A related statement -- also listed as false -- is that "in any vector space, ax=ay implies that x=y." Again, given the axioms we have.
-- the little ball going round and round a spinning roulette wheel
-- a car driving around a curve in the road at a constant speed
-- any Earth satellite in a perfectly circular orbit.
The closest thing to it is a geostationary TV satellite ... they try hard
to make those orbits perfectly circular, and keep correcting them to
stay circular.
Answer:
5.59 m/s2
Explanation:
F = 1900 N
m = 340 kg
F = ma
Therefore, a = 1900/340 = 5.59
Answer:
The path difference between the two waves should be one-half of a wavelength
Explanation:
When two beams of coherent light travel different paths, arriving at point P. If the maximum destructive interference is to occur at point P , then the condition for it is that the path difference of two beams must be odd multiple of half wavelength. Symbolically
path difference = ( 2n+1 ) λ / 2
So path difference may be λ/2 , 3λ/ 2, 5λ/ 2 etc .
Hence right option is
The path difference between the two waves should be one-half of a wavelength.