You multiply 6.50 by the molar mass of H2SO4.
The mass in grams of nitric acid that is required to react with 454g C7H8 is 932.72 grams
calculation
find the moles of C7H8 used
moles = mass/molar mass
= 454 g/92 = 4.935 moles
balanced reacting equation
C7H8 +3 HNO3 = C7H5N3O6 +3 H20
by use of mole ratio between C7H8 to HNo3 which is 1:3 the moles of HNO3 =4.935 x3 = 14.805 moles
mass of HNo3 = moles x molar mass
= 14.805 x 63 = 932.72 grams
part B
the mass of C7H5N3o6 = 2045.5 grams
calculate the moles of C7H8
= 829 g/92 g/mol = 9.011 moles
by use of mole ratio between C7H8 to C7H5N3O6 which is 1:1 the moles of C7H5N3O6 is also = 9.011 moles
mass of C7H5N3O6 is therefore = moles x molar mass
=9.011 x227 = 2045.5 grams
<span>The particles are far apart from each other.</span>
Answer:
Rb+
Explanation:
Since they are telling us that the equivalence point was reached after 17.0 mL of 2.5 M HCl were added , we can calculate the number of moles of HCl which neutralized our unknown hydroxide.
Now all the choices for the metal cation are monovalent, therefore the general formula for our unknown is XOH and we know the reaction is 1 equivalent acid to 1 equivalent base. Thus we have the number of moles, n, of XOH and from the relation n = M/MW we can calculate the molecular weight of XOH.
Thus our calculations are:
V = 17.0 mL x 1 L / 1000 mL = 0.017 L
2.5 M HCl x 0.017 L = 2.5 mol/ L x 0.017 L = 0.0425 mol
0.0425 mol = 4.36 g/ MW XOH
MW of XOH = (atomic weight of X + 16 + 1)
so solving the above equation we get:
0.0425 = 4.36 / (X + 17 )
0.7225 +0.0425X = 4.36
0.0425X = 4.36 -0.7225 = 3.6375
X = 3.6375/0.0425 = 85.59
The unknown alkali is Rb which has an atomic weight of 85.47 g/mol
Answer:
Explanation:
A lewis acid is an electron pair acceptor. A definition of a lewis acid is something that when dissolves in water produces hydrogen ions (protons). Hence, this positively charged particle can then accept non bonding electrons and can hence be called an electron pair acceptor.