Answer:
The precipitate was chromium hydroxide, which then reacted with more hydroxide to produce a soluble complex, Cr(OH)4
Explanation:
The following reaction takes place when chromium(III) nitrate reacts with NaOH:
+3 NaOH →
(s)+ 
The precipitate that is formed is chromium hydroxide, 
When more NaOH is added, the precipitate reacts with it which then results in the formation of a soluble complex ion:
(s) +
(aq) →
(aq)
is soluble complex ion
Answer:
Specific heat of solid A is greater than specific heat of solid B.
Explanation:
In the calorimeter, as the temperature is increasing, the vibrational kinetic energy will increase and this means that additional amount of energy will be needed to increase the temperature by the same value. Therefore, we can conclude that specific heat increases as temperature increases.
Now, we are told that the final temperature of solid A's calorimeter is higher than that of B.
This means from our definition earlier, Solid A will have a higher specific heat that solid B.
The answer is: H₃PO₄.
A phosphoric acid is three protic acid, which means that in water release tree protons.
Phosphoric acid ionizes in three steps in water.
First step: H₃PO₄(aq) ⇄ H₂PO₄⁻(aq) + H⁺(aq).
Second step: H₂PO₄⁻(aq)⇄ HPO₄²⁻(aq) + H⁺(aq).
Third step: HPO₄²⁻(aq) ⇄ PO₄³⁻(aq) + H⁺(aq).
Species that are present: H₃PO₄, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻ and H⁺.
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable.
Answer:
The mean velocity is 13 ft/s.
The Reynolds number is 88,583 and it is dimensionless.
Explanation:
We have water flowing in a pipe of 1.05 in diameter.
The density is ρ=62.3 lb/ft and the viscosity is 1.2 cP.
The mean velocity can be calculated as

The Reynolds number now can be calculated for this flow as

being ρ: density, u: mean velocity of the fluid, D: internal diameter of the pipe and μ the dynamic viscosity.
To simplify the calculation, we can first make all the variables have coherent units.
<em>Viscosity</em>

<em>Diameter</em>

Then the Reynolds number is
