Answer:
Lower
Lower
gsintheta (gsinθ)
Explanation:
The sum of forces resolved parallel to the inclined plane is given by;
F - mgsinθ = 0
ma - mgsinθ = 0
ma = mgsinθ
a = gsinθ
Acceleration is proportional to angle of inclination, thus the lower the angle of the slope, lower the acceleration along the ramp.
therefore, the speed at the bottom of a slope will be lower, (velocity is directly proportional to acceleration) and, consequently, the control will be better.
The acceleration along the ramp, is gsintheta (gsinθ)
Answer:
<h2>0.056 W</h2>
Explanation:

From ohms law we know that
Given data
P1 = 0.5 Watt
P2 = ?
V1= 3 Volts
V2= 1 Volt
Thus we can solve for the power dissipated as follows


<em>The resistor will dissipate 0.056 Watt</em>
Answer:
<h2>0.2 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.2 m/s²</h3>
Hope this helps you
Solution :-
Given :
Distance 1 = 30 km
Distance 2 = 70 km
We know that speed = distance/time
and, Average speed = total distance/total time taken
When the train acquired a speed of 30 km/hr, the time taken = 30/30 = 1 hour
Average speed = 9distance 1 + distance 2)/(time 1 + time 2)
AS time 2 or t2 is time taken for the second part of the journey of 70 km
⇒ 40 = 100/(1 + t2)
⇒ 40 + 40t2 = 100
⇒ 40t2 = 100 - 40
⇒ 40t2 = 60
⇒ t2 = 60/40
⇒ t2 = 1.5
So, t2 or time taken to travel the second part of the journey is 1.5 hours.
Speed of the second part of the journey = distance 2/time 2
⇒ 70/1.5
⇒ 46.666 km/hr or 46.7 km/hr.
Hence the answer is = 46.666 km/hr or 46.7 km/hr.
Hope it helped u if yes mark me BRAINLIEST!
Tysm!
:)