Answer:
The value is 
Explanation:
From the question we are told that
The period of the asteroid is 
Generally the average distance of the asteroid from the sun is mathematically represented as
![R = \sqrt[3]{ \frac{G M * T^2 }{4 \pi} }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7BG%20M%20%2A%20T%5E2%20%7D%7B4%20%5Cpi%7D%20%7D)
Here M is the mass of the sun with a value

G is the gravitational constant with value 
![R = \sqrt[3]{ \frac{6.67 *10^{-11} * 1.99*10^{30} * [5.55 *10^{9}]^2 }{4 * 3.142 } }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6.67%20%2A10%5E%7B-11%7D%20%20%2A%201.99%2A10%5E%7B30%7D%20%2A%20%5B5.55%20%2A10%5E%7B9%7D%5D%5E2%20%7D%7B4%20%2A%203.142%20%7D%20%7D)
=> 
Generally

So

=> 
=> 
Cuando la presión aumenta en el agua, disminuye el punto de fusión del hielo. Ósea esta a temperatura muy alta.
Espero que esto te ayude y no me haya confundido
Answer:
Explanation:
initial momentum = .36 kg.m.s⁻¹
negative impulse = force x time = .02 x 12 = .24 kg.m.s⁻¹
final momentum - initial momentum = impulse
final momentum = initial momentum + impulse
= .36 - .24
= .12 kg.m.s⁻¹
If iodine is added to a starch solution, they react with each other and the iodine darkens to an almost pitch black.
however, if iodine is added to a solution containing no starch, it will show up only as an extremely pale brown. almost colorless and hardly visible.
when following the changes in some inorganic oxidation reduction reactions, iodine may be used as an indicator to follow the changes of iodide ion and iodine element. soluble starch solution is added. only iodine element in the presence of iodide ion will give the characteristic blue black color. neither iodine element alone nor iodide ions alone will give the color result.
hope this answer really helps your question :)
The equivalent resistance of several devices connected in parallel is given by

where

are the resistances of the various devices. We can see that every time we add a new device in parallel, the term

increases, therefore the equivalent resistance of the circuit

decreases.
But Ohm's law:

tells us that if the equivalent resistance decreases, the total current in the circuit increases. The power dissipated through the circuit (and so, the heat produced) depends on the square of the current:

therefore if there are too many devices connected in parallel, this can be a problem because there could be too much power dissipated (and too much heat) through the circuit.