1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VLD [36.1K]
3 years ago
6

Flat plate collector can provide temperature upto_____​

Engineering
2 answers:
Vinil7 [7]3 years ago
5 0

Answer:

<h2>80° C </h2>

Explanation:

<h3><em>Flat </em><em>plate </em><em>collector</em><em> </em><em>can </em><em>provide</em><em> </em><em>temperature</em><em> </em><em>upto </em><u><em>8</em><em>0</em><em>°</em><em>C</em><em> </em></u></h3>

<h3><em>Hope </em><em>my </em><em>answer</em><em> </em><em>is</em><em> helpful</em><em> to</em><em> you</em><em> </em><em>❣️</em><em>☪️</em><em>❇️</em><em>❇️</em><em>☪️</em><em>❣️</em><em>✌️</em></h3>
lana66690 [7]3 years ago
4 0

Answer:

80⁰C

Explanation:

80°C.

Normal flat plate collectors can deliver heat at temperatures up to 80°C. Deficiency rates for normal flat plate collectors can be classified as visual losses, which produce with cumulative angles of the incident sunshine, and thermal losses, which upsurge fast with the working temperature intensities

You might be interested in
8. Two 40 ft long wires made of differing materials are supported from the ceiling of a testing laboratory. Wire (1) is made of
san4es73 [151]

Answer:

Material K has a modulus of elasticity E=3.389× 10¹¹ Pa

Material H has a modulus of elasticity E=1.009 × 10⁹ Pa

Material K has higher value of modulus of elasticity than material H

Material K is stiffer.

Explanation:

Wire 1 material H

Length=L = 40 ft =12.192 m

Diameter= 3/8 in = 0.009525 m

Area= A= πr²,where r=0.009525/2 =0.004763

A=3.142*0.004763² =0.00007126 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.10 in = 0.00254

To find modulus of elasticity apply'

E=F*L/A*ΔL

E=1001.25*12.192/(0.004763*0.00254)

E= 1009027923.58 Pa

E=1.009 × 10⁹ Pa

For Wire 2 material K

Length=L= 40 ft =12.192 m

Diameter = 3/16 in = 0.1875 in = 0.004763 m

Area= πr² = 3.142 * (0.004763/2)² = 0.00000567154 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.25 in =0.00635 m

To find modulus of elasticity apply'

E=F*L/A*ΔL

E= (1001.25*12.192)/(0.00000567154 * 0.00635 )

E=338955422575 Pa

E=3.389× 10¹¹ Pa

Material  K has a greater modulus of elasticity

The material with higher value of E is stiffer than that with low value of E.The stiffer material is K.

8 0
3 years ago
A group of n Ghostbusters is battling n ghosts. Each Ghostbuster carries a proton pack, which shoots a stream at a ghost, eradic
babunello [35]

Answer:

Using the above algorithm matches one pair of Ghostbuster and Ghost. On  each side of the line formed by the pairing, the number of Ghostbusters and Ghosts are  the same, so use the algorithm recursively on each side of the line to find pairings. The  worst case is when, after each iteration, one side of the line contains no Ghostbusters  or Ghosts. Then, we need n/2 total iterations to find pairings, giving us an P(n^{2} lg n)-  time algorithm.

4 0
4 years ago
The capacity of a battery is 1800 mAh and its OCV is 3.9 V. a) Two batteries are placed in series. What is the combined battery
Lynna [10]

Answer:

capacity  = 0.555 mAh

capacity  = 3600 mAh

Explanation:

given data

battery = 1800 mAh

OCV = 3.9 V

solution

we get here capacity when it is in series

so here Q = 2C  

capacity  = 2 × ampere × second   ...............1

put here value and we get

and 1 Ah = 3600 C

capacity  = \frac{2}{3600}

capacity  = 0.555 mAh

and

when it is in parallel than capacity will be

capacity = Q1 +Q2   ...............2

capacity  = 1800 + 1800

capacity  = 3600 mAh

3 0
4 years ago
An 1,840 W toaster, a 1,420 W electric frying pan, and a 70 W lamp are plugged into the same outlet in a 15 A, 120 V circuit. (T
Viktor [21]

Answer:

A)

Current drawn by toaster = 15.33 A

Current drawn by electric frying pan = 11.83 A

Current drawn by lamp = 0.58 A

B)

The fuse will definitely blow up since the current drawn by three devices (27.74 A) is way higher than 15 A fuse rating.

Explanation:

There are three devices plugged into the same outlet.

Toaster = 1840 W

Electric frying pan = 1420 W

Lamp = 70 W

Since the three devices are connected in parallel therefore, the voltage across them will be same but the current drawn by each will be different.

A) What current is drawn by each device?

The current flowing through the device is given by

I = P/V

Where P is the power and V is the voltage.

Current drawn by toaster:

I = 1840/120

I = 15.33 A

Current drawn by electric frying pan:

I = 1420/120

I = 11.83 A

Current drawn by lamp:

I = 70/120

I = 0.58 A

B) Will this combination blow the 15-A fuse?

The total current drawn by all three devices is

Total current = 15.33 + 11.83 + 0.58

Total current = 27.74 A

Therefore, the fuse will definitely blow up since the current drawn by three devices (27.74 A) is way higher than 15 A fuse rating.

5 0
4 years ago
A 50 mm diameter shaft is subjected to a static axial load of 160 kN. If the yield stress of the material is 350 MPa, the ultima
zvonat [6]

In order to develop this problem it is necessary to take into account the concepts related to fatigue and compression effort and Goodman equation, i.e, an equation that can be used to quantify the interaction of mean and alternating stresses on the fatigue life of a materia.

With the given data we can proceed to calculate the compression stress:

\sigma_c = \frac{P}{A}

\sigma_c = \frac{160*10^3}{\pi/4*0.05^2}

\sigma_c = 81.5MPa

Through Goodman's equations the combined effort by fatigue and compression is expressed as:

\frac{\sigma_a}{S_e}+\frac{\sigma_c}{\sigma_u}=\frac{1}{Fs}

Where,

\sigma_a=Fatigue limit for comined alternating and mean stress

S_e =Fatigue Limit

\sigma_c=Mean stress (due to static load)

\sigma_u = Ultimate tensile stress

Fs =Security Factor

We can replace the values and assume a security factor of 1, then

\frac{\sigma_a}{320}+\frac{81.5}{400}=\frac{1}{1}

Re-arrenge for \sigma_a

\sigma_a = 254.8Mpa

We know that the stress is representing as,

\sigma_a = \frac{M_c}{I}

Then,

Where M_c=Max Moment

I= Intertia

The inertia for this object is

I=\frac{\pi d^4}{64}

Then replacing and re-arrenge for M_c

M_c = \frac{\sigma_a*\pi*d^3}{32}

M_c = \frac{260.9*10^6*\pi*0.05^3}{32}

M_c = 3201.7N.m

Thereforethe moment that can be applied to this shaft so that fatigue does not occur is 3.2kNm

5 0
4 years ago
Other questions:
  • A 1-lb collar is attached to a spring and slides without friction along a circular rod in a vertical plane. The spring has an un
    6·1 answer
  • Consider 1.0 kg of austenite containing 1.15 wt% C, cooled to below 727C (1341F). (a) What is the proeutectoid phase? (b) How
    14·1 answer
  • A _____ satellite system employs many satellites that are spaced so that, from any point on the Earth at any time, at least one
    10·1 answer
  • In digital communication technologies, what is an internal network also known as?
    9·1 answer
  • Argon is compressed in a polytropic process with n = 1.2 from 100 kPa and 30°C to 1200 kPa in a piston–cylinder device. Determin
    14·1 answer
  • What engine does chrysler 300c have?​
    15·1 answer
  • La probabilidad de que un nuevo producto tenga éxito es de 0.85. Si se eligen 10 personas al azar y se les pregunta si compraría
    12·1 answer
  • The following laboratory test results for Atterberg limits and sieve-analysis were obtained for an inorganic soil. [6 points] Si
    14·1 answer
  • Which explanation best summarizes what went wrong during Paul’s cost analysis?
    14·1 answer
  • What is the first test you should do when checking the charging system?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!