-- Use the formula D=(1/2)·(g)·(t²) to calculate how long
it takes the flower pot to fall to the ground.
1.5 m = (1/2) · (9.8 m/s²) · (t²)
t² = (1.5 m) / (4.9 m/s²)
t = 0.554 second
-- Use the formula Distance = (speed)·(time) to calculate
how far the pot traveled horizontally in that amount of time.
Distance = (8 m/s) · (0.554 sec)
Distance horizontally = 4.43 meters
The answer for this question is Control Variable because it doesn’t change throughout the experiment.
Answer:
1.because of the heat produced by the socat
2. they should have control how they placed the heater
3. because the water is to much
4.because is different from the question
5. because that is how the question is
Explanation:
Fluids exert both drag and lift forces on moving objects. Drag is the frictional force opposing motion. Lift is the force perpendicular to motion.
Some objects, like parachutes, are designed with large cross sectional areas to increase drag force. Usually though, objects are designed to minimize drag force. It's why cars, planes, and boats have sleek shapes.
Airplane wings have shapes called airfoils that generate lift. It's what makes them fly. The same shape is found in racecar spoilers. These spoilers use lift force to push down on the rear tires, increasing traction.
For any mass m:
a = F/m
v = √2*F/m*s = √2F/sm = k/√m
Momentum = mv = k√m
Energy = 1/ mv² = 1/2 m.k²/m = 1/2k²
SO
Both will have same energy
The larger mass will have greater momentum