The main requirement for a good conductor of electricity is to have a lot of valence electrons. Valence electrons are the electrons of the outer shells of atoms not bound with other atoms (for example through covalent bounds). These electrons are "free to escape" as soon as an electric field with enough intensity is applied to the material, and therefore these electrons will be free to move in the material producing an electric current.
Rearranging formulas is all about simple algebra rules. Just like when solving for x in an equation, you're just isolating whichever variable you want. I'll work this one out for you and hopefully it'll help, but if you need more explanation, then feel free to comment!
D = ViT + 0.5at² Subtract ViT from both sides
D - ViT = 0.5at² Divide both sides by 0.5t²
I wrote this step out a little more to show how your fraction will cancel
= a I like to flip these around so the single variable is on the right
a = 
The total electric potential at the center of the square due to the four charges is V = √2Q/πÈa.
<h3>What do you mean by electric potential? </h3>
The amount of work needed to move a unit charge from a reference point to a specific point against an electric field. It's SI unit is volt.
V = kq/r
Where V represents electric potential, K is coulomb constant, q is Charge and r is distance between any two around charge to the point charge.
Electric potential at O due to four charges is given by,
V = 4KQ/ r
where, r = √2a/2 = a/√2
V = 4k × Q√2/a
V = √2Q/πÈa
The total electric potential at the center of the square due to the four charges is V = √2Q/πÈa.
To learn more about electric potential refer to:
brainly.com/question/12645463
#SPJ4
Answer:
the sum of all force being applied to an object.
Explanation: