You can use Vf^2-Vi^2 = 2ax
Vf^2 - 0 = 2(9.81)(25)
Or you can use energy
mgh = 1/2mv^2
2gh =v^2
Same thing
Explanation:
option A is the correct answer, if the gravitational acceleration is taken 10m/s²(rounding of 9.8/ms²).
hope this helps you.
<span>160 Joules
For this problem, we can ignore the vertical component of the applied force and focus on only the horizontal component of 80 N and since work is defined as force over distance, let's multiply the force by the distance:
80 N * 2.0 m = 160 Nm = 160 kg*m^2/s^2 = 160 Joules.
So the cart has a final kinetic energy of 160 Joules.</span>
Answer:
Intensity of the transmitted radio wave is 5.406 x 10⁻⁶ W/m²
Explanation:
Given;
power of radio transmitter, P = 63.2 kW = 63200 W
distance of transmission, r = 30.5 km
Intensity of the transmitted radio wave is calculated as follows;

where;
I is the intensity of the transmitted radio wave
Substitute the given values and calculate the intensity of the transmitted radio wave;

Therefore, Intensity of the transmitted radio wave is 5.406 x 10⁻⁶ W/m²
Answer:
amount of work done, W = 549.36 kJ
Given:
mass of a car engine, m = 2500 kg
initial velocity, u = 45 mph
final velocity, v = 65 mph
1 mile = 1609
Solution:
We know that 1 hour = 3600 s
Now, velocities in m/s are given as:
u = 45 mph =
= 20.11 m/s
v = 65 mph =
= 29.05 m/s
Now, the amount of work done, W is given by the change in kinetic energy of the car and is given by:
W = 
W = 
W = 
W = 549.36 kJ