Answer: The principle of conservation of energy, angular speed and centripetal force
Explanation:
At point A, the car experienced maximum of potential energy
As it moves down the hill, the potential energy decreases while the kinetic energy increases.
The maximum kinetic energy of the car is needed for the attainment of enough centripetal force to help the car move through the loop without falling .
Answer:
Friction
Explanation:
As the toy cars rolls away, more friction is created. The more friction there is, the more friction on surface rubs against another which creates friction which in-term slows it down. Hope this helps.
Momentum is conserved in a collision. Momentum is mass*velocity, so you can find your answer by calculating initial and final momentums and setting them equal to each other.
15kg * 3.50 m/s + 9kg * 2.35 m/s = 73.65 kg m/s
73.65 = 9 * 2.8 + 15x
solve for x
x= 3.23
The final velocity is 3.23 m/s
Answer:
a) 32.58 m/s²
b) 161.84 m/s
Explanation:
Initial velocity = u = 0
Final velocity = v = 145 m/s
Time taken = t = 4.45 s
s = Displacement of dragster = 402 m
a = Acceleration


The final velocity is greater than the velocity used to find the average acceleration due to the gear changes. The first gear in a dragster has the most amount of toque which means the acceleration will be maximum. The final gears have less torque which means the acceleration is lower here. The final gears have less acceleration but can spin faster which makes the dragster able to reach higher speeds but slowly.