The appropriate answer is a. HUNTER-GATHERER. Hunter-gatherer societies are nomadic and they forage for edible plants, bean, fruits and nuts. They also hunt wild game for food. Early humans in the Neolithic period practiced this way of life.
Agrarian societies thrive on agriculture which they depend on for sustainable and for trade. Animals and plants are domesticated and so people can settle and build a society. Pastoral agriculture is a semi-nomadic lifestyle where the society is centered around keeping herds of grazing animals. Industrial societies focus on manufacturing and this is the backbone of the society.
The way you calculate the empirical formula is to firstly assume 100g. To find each elements moles you take each elements percentage listed, times it by one mole and divide it by its atomic mass. (ex: moles of K =55.3g x 1 mole/39.1g, therefore there is 1.41432225 moles of Potassium) Once you’ve completed this for every element you list each elements symbol beside it’s number of moles and divide by the smallest number because it can only go into its self once. After you’ve done this, you’ve found your empirical formula, which is the simplest whole number ratio of atoms in a compound. I’ve added an example of a empirical question I completed last semester :)
Answer:
There is a production of 11.6 moles of CO₂
Explanation:
The reaction is this:
2C₂H₆(g) + 7O₂(g) ⟶ 4CO₂(g) + 6H₂O(g)
2 moles of ethane reacts with 7 moles of oxygen, to make 4 mol of dioxide and 6 moles of water vapor.
If the oxygen is in excess, we make the calculate with the ethane (limiting reactant)
2 moles of ethane produce 4 moles of dioxide
5.8 moles of ethane produce (5.8 .4)/2 = 11.6 moles
Answer:
In H2CO3(aq) + H2O(l) + CO2(g) there are:
4 hydrogen atoms
2 carbon atoms
6 oxygen atoms