1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
3 years ago
5

Gtjffs

Engineering
1 answer:
grandymaker [24]3 years ago
4 0

the required documents is 3000

You might be interested in
If you are interested only in the temperature range of 20° to 40°C and the ADC has a 0 to 3V input range, design a signal condit
mario62 [17]

Explanation:

Temperature range → 0 to 80'c

respective voltage output → 0.2v to 0.5v

required temperature range 20'c to 40'c

Where T = 20'c respective voltage

\begin{aligned}v_{20} &=0.2+\frac{0.5-0.8}{80} \times 20 \\&=0.2+\frac{0.3}{80} \times 20 \\V_{20} &=0.275 v\end{aligned}

\begin{aligned}\text { when } T=40^{\circ} C & \text { . } \\v_{40} &=0.2+\frac{0.5-0.2}{80} \times 40 \\&=0.35 V\end{aligned}

Therefore, Sensor output changes from 0.275v to 0.35volts for the ADC the required i/p should cover the dynamic range of ADC (ie - 0v to 3v)

so we have to design a circuit which transfers input voltage 0.275volts - 0.35v to 0 - 3v

Therefore, the formula for the circuit will be

\begin{array}{l}v_{0}=\left(v_{i n}-0.275\right) G \\\sigma=\ldots \frac{3-0}{0.35-0.275}=3 / 0.075=40 \\v_{0}=\left(v_{i n}-0.275\right) 40\end{array}

The simplest circuit will be a op-amp

NOTE: Refer the figure attached

Vs is sensor output

Vr is the reference volt, Vr = 0.275v

\begin{aligned}v_{0}=& v_{s}-v_{v}\left(1+\frac{R_{2}}{R_{1}}\right) \\\Rightarrow & \frac{1+\frac{R_{2}}{R_{1}}}{2}=40 \\& \frac{R_{2}}{R_{1}}=39 \quad \Rightarrow\end{aligned}

choose R2, R1 such that it will maintain required  ratio

The output Vo can be connected to voltage buffer if you required better isolation.

3 0
3 years ago
Is the COP of a heat pump always larger than 1?
Liono4ka [1.6K]

Answer:

Yes

Explanation:

Yes it is true that COP of heat pump always greater than 1.But the COP of refrigeration can be greater or less than 1.

We know that

COP of heat pump=  1 + COP of refrigeration

It is clear that COP can not be negative .So from the above expression we can say that COP of heat pump is always greater than one.  

3 0
3 years ago
Which of the following describes design components that deal with the outward appearance or beauty of an object?
lisov135 [29]

Aesthetic elements are the components that are added to the design to be considered pleasing to the eye.

<h3>What are aesthetic elements?</h3>

They are those characteristics of an object that deal with the outward appearance or beauty of an object, that is, they are those elements that make it valuable, appreciable, relevant or transcendent.

To do this, the qualities must be in the design of the object but must also be perceived by the consumer, the aesthetic being what we like to perceive in objects.

Therefore, we can conclude that aesthetic elements are the components that are added to the design to be considered pleasing to the eye.

Learn more about aesthetic elements here: brainly.com/question/24568271

7 0
2 years ago
Read 2 more answers
A mixture of air and methane is formed in the inlet manifold of a natural gas-fueled internal combustion engine. The mole fracti
german

Answer:

The mass flow rate of the mixture in the manifold is 6.654 kg/min

Explanation;

In this question, we are asked to calculate mass flow rate of the mixture in the manifold

Please check attachment for complete solution and step by step explanation.

4 0
3 years ago
A well insulated turbine operates at steady state. Steam enters the turbine at 4 MPa with a specific enthalpy of 3015.4 kJ/kg an
Anarel [89]

Answer:

power developed by the turbine = 6927.415 kW

Explanation:

given data

pressure = 4 MPa

specific enthalpy h1 = 3015.4 kJ/kg

velocity v1 = 10 m/s

pressure = 0.07 MPa

specific enthalpy h2 = 2431.7 kJ/kg

velocity v2 = 90 m/s

mass flow rate = 11.95 kg/s

solution

we apply here  thermodynamic equation that

energy equation that is

h1 + \frac{v1}{2}  + q = h2 + \frac{v2}{2}  + w

put here value with

turbine is insulated so q = 0

so here

3015.4 *1000 + \frac{10^2}{2}  =  2431.7 * 1000 + \frac{90^2}{2}  + w

solve we get

w = 579700 J/kg = 579.7 kJ/kg

and

W = mass flow rate × w

W = 11.95 × 579.7

W = 6927.415 kW

power developed by the turbine = 6927.415 kW

7 0
3 years ago
Other questions:
  • The number of weaving errors in a twenty-foot by ten-foot roll of carpet has a mean of 0.8 What is the probability of observing
    6·1 answer
  • Sea X una variable aleatoria con funci´on de densidad
    9·1 answer
  • g A plane stress element has components sigma x = 160 MPa, tau xy = 100 MPa (CW). Determine the two values pf sigma y for which
    13·1 answer
  • True/False<br> An anemometer displays wind direction, wind speed, altitude and type of precipitation
    12·1 answer
  • Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d
    12·1 answer
  • Orbit is to _____ as altitude is to _____.
    13·2 answers
  • Explain crystallographic defects.
    11·1 answer
  • At the coast on a summer day, the land is hotter than the ocean. Warm air over the land rises and is replaced by cooler air, cau
    14·2 answers
  • Technician A says that if fuel pump pressure is correct, fuel pump volume will be correct as well. Technician B says that a fuel
    15·1 answer
  • Technician A says test lights are great for performing simple tests. Technician B says you can use a test light to check SRS cir
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!