Answer:
I2>I1
Explanation:
This problem can be solved by using the parallel axis theorem. If the axis of rotation of a rigid body (with moment of inertia I1 at its center of mass) is changed, then, the new moment of inertia is gven by:

where M is the mass of the object and d is the distance of the new axis to the axis of the center of mass.
It is clear that I2 is greater than I1 by the contribution of the term Md^2.
I2>I1
hope this helps!!
Answer:
Explanation:
It is given that the sphere is insulated from ground and a large charge is placed on the sphere. The charge on the hollow sphere will always remain on the outer surface of the sphere and there will be no charge on the inner surface of the sphere.
If a person touches the inner surface of the sphere then he will not be harmed as there is no charge on the inner surface of the sphere.
If a person carries the charge of the opposite sign of the same magnitude then the sphere and person get neutralized upon touching the sphere.
If a person does not touches the sphere then the charge on the outer surface will be zero and there will be a positive charge on the inner surface of the sphere
A) The kinetic energy of an object is given by:

where m is the mass of the object, and v its speed. For the lion in our problem, m=45 kg and v=14.2 m/s, so its kinetic energy is

b) the increase in gravitational potential energy of the lion is given by:

where g is the gravitational acceleration, and

is the increase in altitude of the lion. In this problem,

, so the increase in gravitational potential energy is

c) When the fox reaches the top of the tree, its gravitational potential energy is

As it jumps, its kinetic energy is

So the total mechanical energy of the fox as it jumps is
Answer:
The maximum potential energy of the system is 0.2 J
Explanation:
Hi there!
When the spring is stretched, it acquires potential energy. When released, the potential energy is converted into kinetic energy. If there is no friction nor any dissipative forces, all the potential energy will be converted into kinetic energy according to the energy conservation theorem.
The equation of elastic potential energy (EPE) is the following:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretching distance.
The elastic potential energy is maximum when the block has no kinetic energy, just before releasing it.
Then:
EPE = 1/2 · 40 N/m · (0.1 m)²
EPE = 0.2 J
The maximum potential energy of the system is 0.2 J