Answer:
a. H + d. Na
Explanation:
This is Mixture of H and Na. Because of H and in the emission and Absorption spectrum of H Total 5 lines [Red, Green, Blue and Purple (2)) are present and in the spectrum of Na Two yellow lines are present. In the mixture all this lines are are also 5 + Present. Total lines are 5+2= 7 (H+ Na)
Therefore, the answer is a. H + d. Na
Answer: 0.176 atm
Explanation: Solution attached:
Use Boyle's Law to find the new pressure of the gas.
P1V1 = P2V2
Derive for P2
P2 = P1V1 / V2
= 5.5 atm ( 4.8 L ) / 150 L
= 0.176 atm
We can use the dilution formula to find the volume of the diluted solution to be prepared
c1v1 = c2v2
Where c1 is concentration and v1 is volume of the concentrated solution
And c2 is concentration and v2 is volume of the diluted solution to be prepared
Substituting the values in the equation
15 M x 25 mL = 3 M x v2
v2 = 125 mL
The 25 mL concentrated solution should be diluted with distilled water upto 125 mL to make a 3 M solution
The given question is incomplete. The complete question is:
When 136 g of glycine are dissolved in 950 g of a certain mystery liquid X, the freezing point of the solution is 8.2C lower than the freezing point of pure X. On the other hand, when 136 g of sodium chloride are dissolved in the same mass of X, the freezing point of the solution is 20.0C lower than the freezing point of pure X. Calculate the van't Hoff factor for sodium chloride in X.
Answer: The vant hoff factor for sodium chloride in X is 1.9
Explanation:
Depression in freezing point is given by:
= Depression in freezing point
= freezing point constant
i = vant hoff factor = 1 ( for non electrolyte)
m= molality =

Now Depression in freezing point for sodium chloride is given by:
= Depression in freezing point
= freezing point constant
m= molality =


Thus vant hoff factor for sodium chloride in X is 1.9
Density is calculated as mass divided by volume. If we are given an ice cube of side length 8.00 cm, then the volume of the cube is equivalent to (8.00 cm)^3 = 512 cm^3. Since we have a given mass of 476 g, we can divide:
476 g / 512 cm^3 = 0.930 g/cm^3
So the density of the sample of ice is 0.930 g/cm^3.