Answer:
W = 3.12 J
Explanation:
Given the volume is 1.50*10^-3  m^3 and the coefficient of volume for aluminum is β = 69*10^-6 (°C)^-1. The temperature rises from 22°C to 320°C. The difference in temperature is 320 - 22 = 298°C, so ΔT = 298°C. To reiterate our known values we have:
β = 69*10^-6 (°C)^-1       V = 1.50*10^-3  m^3       ΔT = 298°C
So we can plug into the thermal expansion equation to find ΔV which is how much the volume expanded (I'll use d instead of Δ because of format):

So ΔV = 3.0843*10^-5 m^3
Now we have ΔV, next we have to solve for the work done by thermal expansion. The air pressure is 1.01 * 10^5 Pa
To get work, multiply the air pressure and the volume change.

W = 3.12 J
Hope this helps!
 
        
             
        
        
        
What object do you need to match
        
             
        
        
        
Answer:
Take whatever you weigh in pounds and divide by 2.205.
Explanation:
Because weight is a measure of the force you exert on the earth, with some simple manipulation of Newton's second law we can get your mass in kilograms. 2.205 is just a nice constant that does that for you, but the more in-depth version is that
F = ma
The equation for weight is thus
W = mg, where W is your weight in pounds, m is your mass, and g is the acceleration due to gravity (9.80 m/s^2)
Thus, your mass in kilograms is m = W / g.
 
        
             
        
        
        
I think the answer is constant