The final speed of the orange is 7.35 m/s
Explanation:
The motion of the orange is a free fall motion, since there is only the force of gravity acting on it. Therefore, it is a uniformly accelerated motion with constant acceleration
towards the ground. So we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time elapsed
For the orange in this problem, we have
u = 0 (it is dropped from rest)
is the acceleration
Substituting t = 0.75 s, we find the final velocity (and speed) of the orange:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Answer:
Here is the complete question:
https://www.chegg.com/homework-help/questions-and-answers/magnetic-field-372-t-achieved-mit-francis-bitter-national-magnetic-laboratory-find-current-q900632
a) Current for long straight wire 
b) Current at the center of the circular coil 
c) Current near the center of a solenoid 
Explanation:
⇒ Magnetic Field due to long straight wire is given by (B),where

Plugging the values,
Conversion
,and 

⇒Magnetic Field at the center due to circular coil (at center) is given by,
So 
⇒Magnetic field due to the long solenoid,
Then
So the value of current are
,
and
respectively.
Answer:
Pressure is defined as force per unit area. The standard unit for pressure is the Pascal, which is a Newton per square meter.
P= A/F